黎曼几何平行线相交

时间:2023-09-26 23:33:51编辑:奇闻君
黎曼几何验证平行线也有相交的可能。为什么平行线在非欧几里得几何中相交?长期以来,我们一直被告知,在同一平面上永不相交的两条直线被称为平行线,但事实上,这只是欧几里得几何的一个理论,主要适用于我们的日常生活。除此之外,还有非欧几里得层次。与欧几里得几何不同,几何体系主要包括罗氏几何和黎曼几何。第五公设
开头提到的数学学科是罗氏几何的鼻祖。罗巴切夫斯基一直想证明欧几里得几何中的第五个公设,即公社相当于越过一条线,特别是在只有一条线与这条线平行的情况下。在无法证明的情况下,罗巴切夫斯基开始使用反证法,即只要能证明线外的一点能使至少两条线平行于已知的线,那么就能证明第五公设不义。无限延伸的线
最终,罗巴切夫斯基在马鞍脸上找到了答案。事实上,几何上最大的不同在于它是以空间为基础的。在一个非零气质的飞机上。在所谓的非欧几里得几何中,要理解平行线的交点,可以从球面进行简单的理解。如果我们在球面上取任意两点,我们会发现球面上两点之间的最短距离就是大圆的坏部分。大圆是球面上两点之间的短大圆弧。我们之前学过两点之间最短的线段,线段在两端无限延伸形成一条直线,所以只有球面上的大圆是直线。黎曼几何的假设
例如,经线和纬线。所有的都是直线,除了赤道在违章建筑中不是直线。既然赤道大圆是一条直线,那么发现源也是一条直线,所有的发现源都垂直于赤道大圆,那么所有的经线应该是平行的。但是我们知道它们都在南北两极相交,所以平行线在一定距离上相交,或者说球面上所有的线都相交,这就是黎曼几何的假设。

上一篇:毫升是立方厘米吗

下一篇:桦树茸有什么作用