费马大定理

时间:2023-05-16 13:19:06编辑:奇闻君

知识点:费马大定理收集:乜妆诟 编辑:栀子花女孩
本知识点包括:1、求:费马大定理中N=3的证明 2、费马大定理的证明方法 3、费马大定理有没有被证明出来?给谁证明出来了 4、费马大定理证明过程 5、为什么费马大定理在数学史上的地位如此重要 。


《费马大定理》相关知识

【说明】

这要看具体情况,对于university student来说,他们不同;对于中学的童鞋们,就可以认为他们相同.你得确认你能读懂下面的说明材料,严格来讲,是不同的.

【材料】

费马(Pierre de Fermat,公元1601年—公元1665年)是十七世纪最伟大的数学家之一.

他对数学的贡献是多方面的,包括了微分学的概念,解析几何(他和笛卡儿可说是独立地发明解析几何,不过他是第一位把它应用到三维空间的人)和数论.尤其在数论方面,最为世人熟识的当然是费马最后定理(Fermat's Last Theorem),但其实还有很重要的费马小定理(Fermat's Little Theorem,加上“小”是用来分别费马大定理的),以及费马二平方数定理(Fermat's Two Squares Theorem),无限下降法和费马数等等,实在是多不胜数.

费马大定理 ,即:不可能有满足 xn+yn=zn ,n >2的正整数x、y、z、n存在.这命题他写在丢番图《算术》( 拉丁文译本,1621)第 2卷的空白处:“……将一个高于二次的幂分成两个同次幂之和,这是不可能的.

费马小定理是数论中的一个定理.定理:(费马小定理) 当p是素数时,对於任意一个整数a不是p的倍数时,有以下的等式 ap-1≡1 (mod p).

费马最后定理

当整数 n > 2 时,

方程 x n + y n = z n 无正整数解.

勾股定理及勾股数组

勾股定理 在 ABC 中,若 C 为直角,则 a2 + b2 = c2.

留意:32 + 42 = 52; 52 + 122 = 132;

82 + 152 = 172; 72 + 242 = 252; ……等等

即 (3 ,4 ,5),(5 ,12 ,13) … 等等为方程

x 2 + y 2 = z 2 的正整数解.

我们称以上的整数解为「勾股数组」.

知识拓展:

1:费马最后定理是什么?


知识要点归纳:

费马最后定理:xn + yn =zn 的正整数解的问题,当n=2时就是我们所熟知的毕氏定理:x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之两股,也就是一个直角三角形之斜边的平方等于它的两股的平方和.

2:【费马大定理的证明?】


知识要点归纳:

1994年10月,美国普林斯顿大学数学教授安德鲁·怀尔斯,终于圆了童年的梦想,证明了费马大定理.他的论文发表在1995年5月的《数学年刊》上.

费马大定理源自法国人皮埃尔·德·费马.费马生于1601年8月20日,卒于1665年1月12日,是法国地方政府系统中的文职官员,又是业余数学爱好者.从职业上说,他是业余数学家;而从数学成就上说,他足以跻身于伟大专业数学家行列.

所谓费马大定理,或费马猜想(在未证明之前,只能称之为猜想),得从直角三角形的勾股定理(或称毕达哥拉斯定理)说起.学过平面三角的人都知道,直角三角形两直角边的平方之和等于其斜边的平方.或者写成代数式子,即为X 2+Y 2=Z 2.勾股定理中的X、Y和Z有整数解.可以证明,这种X、Y和Z的组合有无限多个.但是,如果把上述公式中的指数2改为3,或更一般地,改为大于2的整数N,则发现难于找到X、Y和Z的整数解.大约在1637年前后,费马在他保存的《算术》一书的页边处写道:“不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;总的来说,不可能将一个高于两次的幂写成两个同样次幂的和”.他又写了一个附加评注:“我有一个对这命题的十分美妙的证明,这里空白太小,写不下.”这就是费马大定理.费马逝世后,他的长子克来孟一缪塞尔·费马意识到他父亲的业余爱好所具有的重要意义,花了5年时间,整理了其父在《算术》一书上的页边空白处的评注,于1670年出版了附有费马注评的《算术》的特殊版本.费马大定理才得以公诸于世,并传于后世.

费马大定理看起来很简单,很容易理解,但要证明它却难住了300多年来一代代杰出的数学家.

安德鲁·怀尔斯出生于英国剑桥,1980年移民美国.1963年他10岁.有一天他从学校漫步回家时,走进了弥尔敦路上的图书馆,被埃里克·坦普尔·贝尔写的《大问题》一书吸引住了.这是怀尔斯第一次接触到费马大定理,他心中产生了征服这个数学难题的强烈愿望.

在以后的岁月中他一直在为实现这个目的而做着准备.他修完了数学学士和博士学业,成为数学教授,加入职业数学家的行列.他广泛吸收和潜心研究各种新的数学理论和方法,并综合应用它们,克服一个又一个的挫折和困难,并最终战胜了300多年来的挑战,把费马大定理的证明划上了圆满的句号.

从上面安德鲁·怀尔斯证明费马大定理的故事中我以为至少可以得到以下几点启示:

一、优秀的科普书籍对人民群众、特别是青少年有巨大的影响.如果安德鲁·怀尔斯没有看到有关科学著作,如果这些科学著作没有以生动形象的手法通俗地介绍科学问题,则很难有安德鲁·怀尔斯的成功.目前,我国对科技工作,包括科普事业的重视程度不断提高,两院院士也投身到科普创作中来了,这是很可喜的现象.但是,只靠院士们的力量,还是不够的,要发动社会上其他人士也加入到科普创作的行列中来.还要建立一些鼓励科普创作和出版的机制,资助一些科普书籍的创作和出版.

二、要实现自己的理想,必须要脚踏实地地去学习,去奋斗.解决困扰世人几百年的数学难题,没有扎实的数学基础,不了解所研究问题的来龙去脉,不掌握几百年来人们对它研究取得的成功经验和失败教训,不融汇贯通地应用各种数学理论和方法,是不可能取得成功的.安德鲁·怀尔斯为实现自己10岁时的梦想,学习、奋斗了30多年,才最终得到成功.这说明在科学上来不得半点虚假,没有投入是得不到成功的.

三、研究和解决一些数学难题,会推动某些数学分支、甚至整个数学学科的发展.例如,安德鲁·怀尔斯在证明费马大定理中融合了各种数学理论和方法,开辟了处理其他众多数学问题的新思路,推进了数学的重大发展.而数学又是推动其他科学和技术发展的有力工具,数学的发展必然会推动生产力的发展.因此,所谓“理论脱离实际”是以狭窄的、片面的和局限的思维方式看问题所得出的观点.从历史的、全面的和总体的观点看,即使像证明费马大定理和哥德巴赫猜想这样抽象的数学问题,也是与人类文明和科学技术的发展息息相关的.当然,自然科学中有些与人类的生产活动联系得直接些、密切些,有些则间接些、疏远些.但是,无论与生产活动联系密切的科学,还是较不密切的科学,它们的进步都将推动生产力的发展.只是有的能迅速地、直接地见效,有的则不那么迅速,不那么直接地显示出来

3:请证一下"费马大定理"谢谢


知识要点归纳:

费马方程X^n+Y^n=Z^n整数解的增元求解法

庄 严 庄宏飞

(辽阳铁路器材厂 111000)

【 摘要】对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议.本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值.本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”;“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题.

关键词:增元求解法 绝对方幂式绝对非方幂式 相邻整数方幂数增项差公式

引言:1621年,法国数学家费马(Fermat)在读看古希腊数学家丢番图(Diophantna)著写的算术学一书时,针对书中提到的直角三角形三边整数关系,提出了方程x^n+y^n=z^n在n=2时有无穷多组整数解,在n>2时永远没有整数解的观点.并声称自己当时进行了绝妙的证明.这就是被后世人称为费马大定理的旷世难题.时至今日,此问题的解答仍繁难冗长,纷争不断,令人莫衷一是.

本文利用直角三角形、正方形的边长与面积的相互关系,建立了费马方程平方整数解新的直观简洁的理论与实践方法,本文利用同方幂数增比定理,对费马方程x^n+y^n=z^n在指数n>2时的整数解关系进行了分析论证,用代数方法再现了费马当年的绝妙证明.

定义1.费马方程

人们习惯上称x^n+y^n=z^n关系为费马方程,它的深层意义是指:在指数n值取定后,其x、y、z均为整数.

在直角三角形边长中,经常得到a、b、c均为整数关系,例如直角三角形 3 、4、 5 ,这时由勾股弦定理可以得到3^2+4^2=5^2,所以在方次数为2时,费马方程与勾股弦定理同阶.当指数大于2时,费马方程整数解之研究,从欧拉到狄里克莱,已经成为很大的一门数学分支.

定义2.增元求解法

在多元代数式的求值计算中引入原计算项元以外的未知数项元加入,使其构成等式关系并参与求值运算.我们把利用增加未知数项元来实现对多元代数式求值的方法,叫增元求解法.

利用增元求解法进行多元代数式求值,有时能把非常复杂的问题变得极其简单.

下面,我们将利用增元求解法来实现对直角三角形三边a^2+b^2=c^2整数解关系的求值.

一,直角三角形边长a^2+b^2=c^2整数解的“定a计算法则”

定理1.如a、b、c分别是直角三角形的三边,Q是增元项,且Q≥1,满足条件:

a≥3

{ b=(a^2-Q^2)÷2Q

c= Q+b

则此时,a^2+b^2=c^2是整数解;

证:在正方形面积关系中,由边长为a得到面积为a^2,若(a^2-Q^2)÷2Q=b(其中Q为增元项,且b、Q是整数),则可把面积a^2分解为a^2=Q^2+Qb+Qb,把分解关系按下列关系重新组合后可得到图形:

Q2 Qb

其缺口刚好是一个边长为b的正方形.补足缺口面积b^2后可得到一个边长

Qb

为Q+b的正方形,现取Q+b=c,根据直角三角形边长关系的勾股弦定理a^2+b^2=c^2条件可知,此时的a、b、c是直角三角形的三个整数边长.

故定理1得证

应用例子:

例1. 利用定a计算法则求直角三角形a边为15时的边长平方整数解?

取 应用例子:a为15,选增元项Q为1,根据定a计算法则得到:

a= 15

{ b=(a^- Q^2)÷2Q=(15^2-1^2)÷2 =112

c=Q+b=1+112=113

所以得到平方整数解15^2+112^2=113^2

再取a为15,选增元项Q为3,根据定a计算法则得到:

a= 15

{ b=(a^2-Q^2)÷2Q=(15^2-3^2)÷6=36

c=Q+b=3+36=39

所以得到平方整数解15^2+36^2=39^2

定a计算法则,当取a=3、4、5、6、7 … 时,通过Q的不同取值,将函盖全部平方整数解.

二,直角三角形边长a^2+b^2=c^2整数解“增比计算法则”

定理2.如a^2+b^2=c^2 是直角三角形边长的一组整数解,则有(an)^2+(bn)^2 =(cn)^2(其中n=1、2、3…)都是整数解.

证:由勾股弦定理,凡a^2+b^2=c^2是整数解必得到一个边长都为整数的直角三角形 a c ,根据平面线段等比放大的原理,三角形等比放大得到 2a 2c;

b 2b

3a 3c;4a 4c;… 由a、b、c为整数条件可知,2a、2b、2c;

3b 4b

3a、3b、3c;4a、4b、4c… na、nb、nc都是整数.

故定理2得证

应用例子:

例2.证明303^2+404^2=505^2是整数解?

解;由直角三角形3 5 得到3^2+4^2=5^2是整数解,根据增比计

4

算法则,以直角三角形 3×101 5×101 关系为边长时,必有

4×101

303^2+404^2=505^2是整数解.

三,直角三角形边长a^2+b^2=c^2整数解“定差公式法则”

3a + 2c + n = a1

(这里n=b-a之差,n=1、2、3…)

定理3.若直角三角形a^2+^b2=c^2是满足b-a=n关系的整数解,那么,利用以上3a+2c+ n = a1公式连求得到的a1、a2、a3…ai 所组成的平方数组ai^2+bi^2=ci^2都是具有b-a=n之定差关系的整数解.

证:取n为1,由直角三角形三边3、4、5得到3^2+4^2=5^2,这里n=b-a=4-3=1,根据 3a + 2c + 1= a1定差公式法则有:

a1=3×3+2×5+1=20 这时得到

20^2+21^2=29^2 继续利用公式计算得到:

a2=3×20+2×29+1=119 这时得到

119^2+120^2=169^2 继续利用公式计算得到

a3=3×119+2×169+1=696 这时得到

696^2+697^2=985^2

故定差为1关系成立

现取n为7,我们有直角三角形21^2+28^2=35^2,这里n=28-21=7,根据 3a + 2c + 7 = a1定差公式法则有:

a1=3×21+2×35+7=140 这时得到

140^2+147^2=203^2 继续利用公式计算得到:

a2=3×140+2×203+7=833 这时得到

833^2+840^2=1183^2 继续利用公式计算得到:

a3=3×833+2×1183+7=4872 这时得到

4872^2+4879^2=6895^2

故定差为7关系成立

再取n为129,我们有直角三角形387^2+516^2=645^2,这里n=516-387=129,根据 3a + 2c + 129= a1定差公式法则有:

a1=3×387+2×645+129=2580 这时得到

2580^2+2709^2=3741^2 继续利用公式计算得到:

a2=3×2580+2×3741+129=15351 这时得到

15351^2+15480^2=21801^2 继续利用公式计算得到:

a3=3×15351+2×21801+129=89784 这时得到

89784^2+89913^2=127065^2

故定差为129关系成立

故定差n计算法则成立

故定理3得证

四,平方整数解a^2+^b2=c^2的a值奇偶数列法则:

定理4. 如a^2+^b2=c^2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立;

(一) 奇数列a:

若a表为2n+1型奇数(n=1、2、3 …), 则a为奇数列平方整数解的关系是:

a=2n+1

{ c=n^2+(n+1)^2

b=c-1

证:由本式条件分别取n=1、2、3 … 时得到:

3^2+4^2=5^2

5^2+12^2=13^2

7^2+24^2=25^2

9^2+40^2=41^2

11^2+60^2=61^2

13^2+84^2=85^2

故得到奇数列a关系成立

(二)偶数列a:

若a表为2n+2型偶数(n=1、2、3 …), 则a为偶数列平方整数解的关系是:

a=2n+2

{ c=1+(n+1)^2

b=c-2

证:由本式条件分别取n=1、2、3 … 时得到:

4^2+3^2=5^2

6^2+8^2=10^2

8^2+15^2=17^2

10^2+24^2=26^2

12^2+35^2=37^2

14^2+48^2=50^2

故得到偶数列a关系成立

故定理4关系成立

由此得到,在直角三角形a、b、c三边中:

b-a之差可为1、2、3…

a-b之差可为1、2、3…

c-a之差可为1、2、3…

c-b之差可为1、2、3…

定差平方整数解有无穷多种;

每种定差平方整数解有无穷多个.

以上,我们给出了平方整数解的代数条件和实践方法.我们同样能够用代数方法证明,费马方程x^n+y^n=z^n在指数n>2时没有整数解.证明如下:

我们首先证明,增比计算法则在任意方次幂时都成立.

定理5,若a,b,c都是大于0的不同整数,m是大于1的整数,如有a^m+b^m=c^m+d^m+e^m同方幂关系成立,则a,b,c,d,e增比后,同方幂关系仍成立.

证:在定理原式 a^m+b^m=c^m+d^m+e^m中,取增比为n,n>1,

得到 : (n a)^m+(nb)^m=(nc)^m+(nd)^m+(ne)^m

原式化为 : n^m(a^m+b^m)=n^m(c^m+d^m+e^m)

两边消掉 n^m后得到原式.

所以,同方幂数和差式之间存在增比计算法则,增比后仍是同方幂数.

故定理5得证

定理6,若a,b,c是不同整数且有a^m+b=c^m关系成立,其中b>1,b不是a,c的同方幂数,当a,b,c同比增大后,b仍然不是a,c的同方幂数.

证:取定理原式a^m+b=c^m

取增比为n,n>1,得到:(na)^m+n^mb=(nc)^m

原式化为: n^m(a^m+b)=n^mc^m

两边消掉n^m后得到原式.

由于b不能化为a,c的同方幂数,所以n^mb也不能化为a,c的同方幂数.

所以,同方幂数和差式间含有的不是同方幂数的数项在共同增比后,等式关系仍然成立.其中的同方幂数数项在增比后仍然是同方幂数,不是同方幂数的数项在增比后仍然是非同方幂数.

故定理6得证

一元代数式的绝对方幂与绝对非方幂性质

定义3,绝对某次方幂式

在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都是某次完全方幂数,我们称这时的代数式为绝对某次方幂式.例如:n^2+2n+1,n^2+4n+4,

n^2+6n+9,……都是绝对2次方幂式;而n^3+3n^2+3n+1,n^3+6n^2+12n+8,……都是绝对3次方幂式.

一元绝对某次方幂式的一般形式为(n+b)^m(m>1,b为常数项)的项.

定义4,绝对非某次方幂式

在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都不是某次完全方幂数,我们称这时的代数式为绝对非某次方幂式.例如:n^2+1,n^2+2,n^2+2n,…… 都是绝对非2次方幂式;而n^3+1,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,n^3+6n^2+8……都是绝对非3次方幂式.

当一元代数式的项数很少时,我们很容易确定代数式是否绝对非某次方幂式,例如n^2+n是绝对非2次方幂式,n^7+n是绝对非7次方幂式,但当代数式的项数很多时,得到绝对非某次方幂式的条件将越来越苛刻.

一元绝对非某次方幂式的一般形式为:在(n+b)^m(m>2,b为常数项)的项中减除其中某一项.

推理:不是绝对m次方幂式和绝对非m次方幂式的方幂代数式必定在未知数取某一值时得出一个完全m次方数.例如:3n^2+4n+1不是绝对非3次方幂式,取n=1时有3n^2+4n+1=8=2^3,3n^2+3n+1不是绝对非2次方幂式,当n=7时,3n^2+3n+1=169=13^2;

推理:不含方幂项的一元代数式对任何方幂没有唯一性.2n+1=9=3^2,2n+1=49=7^2 …… 4n+4=64=8^2,4n+4=256=16^2 ……2n+1=27=3^3,2n+1=125=5^3 ……

证明:一元代数式存在m次绝对非方幂式;

在一元代数式中,未知数的不同取值,代数式将得到不同的计算结果.未知数与代式计算结果间的对应关系是唯一的,是等式可逆的,是纯粹的定解关系.这就是一元代数式的代数公理.即可由代入未知数值的办法对代数式求值,又可在给定代数式数值的条件下反过来对未知数求值.利用一元代数式的这些性质,我们可实现整数的奇偶分类、余数分类和方幂分类.

当常数项为1时,完全立方数一元代数表达式的4项式的固定形式是(n+1)^3=n^3+3n^2+3n+1,它一共由包括2个方幂项在内的4个单项项元组成,对这个代数式中3个未知数项中任意一项的改动和缺失,代数式都无法得出完全立方数.在保留常数项的前提下,我们锁定其中的任意3项,则可得到必定含有方幂项的3个不同的一元代数式,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,对这3个代数式来说,使代数式的值成为立方数只能有唯一一个解,即补上缺失的第4项值,而且这个缺失项不取不行,取其它项值也不行.因为这些代数式与原立方代数式形成了固定的单项定差代数关系,这种代数关系的存在与未知数取值无关.这种关系是:

(n+1)^3-3n= n^3+3n^2+1

(n+1)^3-3n^2= n^3+3n+1

(n+1)^3-n^3=3n^2+3n+1

所以得到:当取n=1、2、3、4、5 …

n^3+3n^2+1≠(n+1)^3

n^3+3n+1≠(n+1)^3

3n2+3n+1≠(n+1)^^3

即这3个代数式的值都不能等于(n+1)^3形完全立方数.

当取n=1、2、3、4、5 …时,(n+1)^3=n^3+3n^2+3n+1的值是从2开始的全体整数的立方,而 小于2的整数只有1,1^3=1,当取n=1时,

n^3+3n^2+1=5≠1

n^3+3n+1=5≠1

3n^2+3n+1=7≠1

所以得到:当取n=1、2、3、4、5 …时,代数式n^3+3n^2+1,n^3+3n+1,3n^2+3n+1的值不等于全体整数的立方数.这些代数式是3次绝对非方幂式.

由以上方法我们能够证明一元代数式:n^4+4n^3+6n^2+1,n^4+4n^3+4n+1,n^4+6n^2+4n+1,4n^3+6n^2+4n+1,在取n=1、2、3、4、5 …时的值永远不是完全4次方数.这些代数式是4次绝对非方幂式.

能够证明5次方以上的一元代数式(n+1)^m的项在保留常数项的前提下,锁定其中的任意m项后,可得到m个不同的一元代数式,这m个不同的一元代数式在取n=1、2、3、4、5 …时的值永远不是完全m次方数.这些代数式是m次绝对非方幂式.

现在我们用代数方法给出相邻两整数n与n+1的方幂数增项差公式;

2次方时有:(n+1)^2-n^2

=n^2+2n+1-n^2

=2n+1

所以,2次方相邻整数的平方数的增项差公式为2n+1.

由于2n+1不含有方幂关系,而所有奇数的幂方都可表为2n+1,所以,当2n+1为完全平方数时,必然存在n^2+(2√2n+1)^2=(n+1)^2即z-x=1之平方整数解关系,应用增比计算法则,我们即可得到z-x=2,z-x=3,z-x=4,z-x=5……之平方整数解关系.但z-x>1的xyz互素的平方整数解不能由增比法则得出,求得这些平方整数解的方法是:

由(n+2)^2-n^2=4n+4为完全平方数时得出全部z-x=2的平方整数解后增比;

由(n+3)^2-n^2=6n+9为完全平方数时得出全部z-x=3的平方整数解后增比;

由(n+4)^2-n^2=8n+16为完全平方数时得出全部z-x=4的平方整数解后增比;

……

这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,我们可得到整数中全部平方整数解.

所以费马方程x^n+y^n=z^n在指数为2时成立.

同时,由于所有奇数的幂方都可表为2n+1及某些偶数的幂方可表为4n+4,6n+9,8n+16 …… 所以,还必有x^2+y^n=z^2整数解关系成立.

3次方时有:(n+1)^3-n^3

=n^3+3n^2+3n+1-n^3

=3n^2+3n+1

所以,3次方相邻整数的立方数的增项差公式为3n^2+3n+1.

由于3n^2+3n+1是(n+1)^3的缺项公式,它仍然含有幂方关系,是3次绝对非方幂式.所以,n为任何整数时3n^2+3n+1的值都不是完全立方数,因而整数间不存在n^3+(3√3n^2+3n+1 )^3=(n+1)^3即z-x=1之立方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之立方整数解关系.但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些立方费马方程式的方法是:

由(n+2)^3-n^3=6n2+12n+8,所以,n为任何整数它的值都不是完全立方数;

由(n+3)^3-n^3=9n2+27n+27,所以,n为任何整数它的值都不是完全立方数;

由(n+4)^3-n^3=12n2+48n+64,所以,n为任何整数它的值都不是完全立方数;

……

这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程3次方关系经过增比后将覆盖全体整数.

所以费马方程x^n+y^n=z^n在指数为3时无整数解.

4次方时有;(n+1)^4-n^4

=n^4+4n^3+6n^2+4n+1-n^4

=4n^3+6n^2+4n+1

所以,4次方相邻整数的4次方数的增项差公式为4n^3+6n^2+4n+1.

由于4n^3+6n^2+4n+1是(n+1)^4的缺项公式,它仍然含有幂方关系,是4次绝对非方幂式.所以,n为任何整数时4n^3+6n^2+4n+1的值都不是完全4次方数,因而整数间不存在n^4+(4√4n3+6n2+4n+1)^4=(n+1)^4即z-x=1之4次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之4次方整数解关系.但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些4次方费马方程式的方法是:

由(n+1)^4-n^4=8n3+24n2+32n+16,所以,n为任何整数它的值都不是完全4次方数;

由(n+1)^4-n^4=12n3+54n2+108n+81,所以,n为任何整数它的值都不是完全4次方数;

由(n+1)^4-n^4=16n3+96n2+256n+256,所以,n为任何整数它的值都不是完全4次方数;

……

这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程4次方关系经过增比后将覆盖全体整数.

所以费马方程x^n+y^n=z^n在指数为4时无整数解.

m次方时,相邻整数的方幂数的增项差公式为:

( n+1)^m-n^m

=n^m+mn^m-1+…+…+mn+1-n^m

=mn^m-1+…+…+mn+1

所以,m次方相邻整数的m次方数的增项差公式为mn^m-1+…+…+mn+1.

由于mn^m-1+…+…+mn+1是(n+1)^m的缺项公式,它仍然含有幂方关系,是m次绝对非方幂式.所以,n为任何整数时mn^m-1+…+…+mn+1 的值都不是完全m次方数,因而整数间不存在n^m+(m√mn^m-1+…+…+mn+1)^m =(n+1)^m即z-x=1之m次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之m次方整数解关系.但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些m次方费马方程式的方法是:

由(n+2)^m-n^m=2mn^m-1+…+…+2^m-1 mn+2^m,所以,n为任何整数它的值都不是完全m次方数;

由(n+3)^m-n^m=3mn^m-1+…+…+3^m-1 mn+3^m,所以,n为任何整数它的值都不是完全m次方数;

由(n+4)^m-n^m=4mn^m-1+…+…+4^m-1 mn+4^m,所以,n为任何整数它的值都不是完全m次方数;

……

这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程m次方关系经过增比后将覆盖全体整数.

所以费马方程x^n+y^n=z^n在指数为m时无整数解.

所以费马方程x^n+y^n=z^n在指数n>2时永远没有整数解.

所以,长达三百多年的费马大定理问题与哥德巴赫猜想问题一样,也是一个初等数

学问题.

4:费马大定理和费马小定理的简述,他们主要讲了什么?


知识要点归纳:

费马大 当整数n >2时,关于x,y,z的方程 x^n + y^n = z^n 没有正整数解

费马小 假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p).即:假如p是质数,且a,p互质,那么a的(p-1)次方除以p的余数恒等于1

5:【费马大定理是什么?具体一点.a^n+b^n=c^n当n>2时,为什么没有原式:a^n+b^n=c^n的整数解?】


知识要点归纳:

费马大定理的表述很简单:对于正整数,不可能将一个高于2次的

幂写成两个同次幂的和.换句话说就是,方程Xn+Yn=Zn,当n>2时,

不存在正整数解.在一本书的页边,费马写到:我有一个对这个命题

的十分优美的证明,这里空白太小,写不下.

猜你喜欢:

1:求:费马大定理中N=3的证明

提示:用因式分解证明费尔马大定理(订正稿丙)(黄振东) 作者;黄振东, 单位:利川市“龙船调”编辑部, 摘要:设:x^n+y^n=z^n,可导出不成立的等式,x^n+y^n=/=z^n。 关键词:数幂,不成立, Abstract: in this paper, using reduction to absurdity,...

2:费马大定理的证明方法

提示:证明费马大定理(证明过程详解) 已知:a^2+b^2=c^2 令c=b+k,k=1.2.3……,则a^2+b^2=(b+k)^2。 因为,整数c必然要比a与b都要大,而且至少要大于1,所以k=1.2.3…… 设:a=d^(n/2),b=h^(n/2),c=p^(n/2); 则a^2+b^2=c^2就可以写成d^n+h^n=p^n,n=...

3:费马大定理有没有被证明出来?给谁证明出来了

提示:被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯证明。 德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克...

4:费马大定理证明过程

提示:下载地址:http://wenku.baidu.com/link?url=_o8jzZuK2dfW4SdtONgJPhBakMSNA5VubJ1k6EvEMUU-kGuxU2Eyb78_9lMpWw1FqS6s9R2bdDti5gClmDxHHlsZHJvp7Fg_Ab6ozKxe_1W

5:为什么费马大定理在数学史上的地位如此重要

提示:1994年10月,美国普林斯顿大学数学教授安德鲁·怀尔斯,终于圆了童年的梦想,证明了费马大定理。他的论文发表在1995年5月的《数学年刊》上。 费马大定理源自法国人皮埃尔·德·费马。费马生于1601年8月20日,卒于1665年1月12日,是法国地方政府系统...

上一篇:cad图纸打印成黑色,cad怎么将彩色图纸打印成黑色的

下一篇:大麦茶上火吗,大麦茶是去火还是上火的