肿瘤免疫治疗的单克隆抗体类免疫检查点抑制
1. Anti-CTLA-4单抗细胞毒性T淋巴细胞抗原4(cytotoxic T-lymphocyte antigen 4, CTLA-4)又名CD152,是由CTLA-4基因编码的一种跨膜蛋白,表达于活化的CD4和CD8 T细胞。CTLA-4和CD28均为免疫球蛋白超家族成员,具有高度同源性,二者与相同的配体B7-2(CD86)和B7-1(CD80)结合。与CD28功能相反,CTLA-4与其配体B7分子结合后后产生抑制性信号,抑制T细胞激活,是免疫系统一个至关重要的 “刹车”。CTLA-4是使肿瘤细胞免受T细胞攻击的一个重要机制。因此阻断CTLA-4的免疫效应可刺激免疫细胞活化,大量增殖,从而诱导或增强抗肿瘤免疫反应。 目前两种靶向CTLA-4的抗体Ipilimumab和Tremelimumab在黑色素瘤、肾癌、前列腺癌、肺癌等的临床研究已广发开展。1/2期临床研究结果显示两种抗体无论是抗体单药还是联合IL-2,gp100疫苗或化疗均显示安全有效。Ipilimumab是全人源化单抗,已被美国FDA批准用于晚期黑色素瘤。在肺癌治疗中的Ⅱ/Ⅲ期临床试验也迅速开展。Tremelimumab也是一种人源化CTLA-4单抗,是一种IgG2抗体,目前在多种肿瘤中的临床试验正在进行中。2. Anti-PD-1/PD-L1单抗程序性死亡受体1(programmed death 1, PD-1)为CD28超家族成员。 PD-1表达于活化的T细胞,B细胞及髓系细胞,其有两个配体,即程序性死亡配体-1(programmed death ligand 1, PD-L1)和PD-L2。PD-L1/L2在抗原递呈细胞都表达,PD-L1在多种组织也有表达。PD-1与PD-L1的结合介导T细胞活化的共抑制信号,调节T细胞活化和增殖,起到类似于CTLA-4的负调节作用。华裔科学家陈列平实验室首先发现PD-L1在肿瘤组织高表达,而且调节肿瘤浸润CD8 T细胞的功能。因此,以PD-1/PD-L1为靶点的免疫调节对抗肿瘤有重要的意义。 近年来,已有多种Anti-PD-1/PD-L1抗体在肿瘤免疫治疗的临床研究迅速开展。目前Pembrolizumab和Nivolumab已被FDA批准用于晚期黑色素瘤,最近Nivolumab也已被美国FDA批准用于晚期鳞状非小细胞肺癌的治疗。另外,MPDL3280A (anti-PD-L1单抗),Avelumab(anti-PD-L1单抗)等也已进入多个晚期临床研究中,覆盖非小细胞癌,黑色素瘤,膀胱癌等多个瘤种。3. 其它类型单克隆抗体其它如增强T细胞第二信号从而促进肿瘤特异性T细胞活化和增值的单抗类,如肿瘤坏死因子TNF受体家族的OX40和4-1BB单抗也在研发中。
肿瘤免疫治疗都包括哪些啊?
癌症免疫疗法,是通过增强自身免疫功能以清除肿瘤细胞的技术。癌症免疫疗法可以分为四个主要类别:非特异性免疫增强剂、疫苗、过继疗法和免疫检查点抑制剂。非特异性免疫增强剂非特异性免疫增强剂并不专一性地针对肿瘤细胞,而是通过整体上调机体的免疫功能来获得对癌症更好的作用效果。作为最早的癌症免疫疗法,非特异性免疫增强剂早在上个世纪90年代便被应用于临床。最为常见的非特异性免疫增强剂包括白介素(Interleukins)和干扰素(Interferons)等。由于人体免疫系统扮演着识别“敌我”的功能,非特异性地上调其功能往往会造成对机体的误伤从而产生较为严重的副作用如流感样症状、皮疹、白细胞减少等,因此非特异性免疫增强剂的使用受到了局限,更多的情况下作为辅助用药与其他免疫疗法或化疗联合应用。而癌症疫苗和过继疗法、免疫检查点抑制剂作为新兴癌症免疫疗法的代表,更为受到研究者与市场的关注。在这个领域内技术迭代日新月异,不断出现的参与者逐渐形成了群雄割据的局面,资本疯狂涌入,共同构筑起人类与癌症战场的最前线。疫苗目前经美国FDA(食品药品监督管理局)批准用于癌症治疗的疫苗共有四种,分别是用于预防宫颈癌的Gardasil与 Cervarix、用于预防肝癌的乙肝疫苗和用于治疗晚期前列腺癌的Provenge。人乳头瘤病毒HPV被认为是90%以上的宫颈癌的诱因,其中高致病性的16、18、31、33、45、52、58七类亚型可通过接种九价HPV疫苗进行预防。同样地,在中国90%以上的原发性肝癌患者均为HBsAg阳性的乙肝患者,通过接种乙肝疫苗可大大降低罹患肝癌的概率。与通过预防癌症相关病毒感染而“曲线救国”的预防性癌症疫苗不同,治疗性癌症疫苗Provenge是第一款真正意义上的癌症疫苗。这款疫苗通过分离患者的树突状细胞并在体外与特异性高表达于前列腺癌细胞的前列腺酸性磷酸酶PAP共同培养,使得树突状细胞“耳濡目染”地学会识别这一特异性抗原。在输回患者体内后,树突状细胞将PAP抗原处理并呈递给T细胞,后者则找到体内表达有PAP的前列腺癌细胞并进行扑灭。除了常规的癌症疫苗外,有部分研究者也将溶瘤病毒归为癌症免疫疗法的一个分支。原本“无恶不作”的病毒经基因改造后能够特异性地感染肿瘤细胞,通过在细胞内大量复制杀伤肿瘤,这一过程中释放出的肿瘤细胞抗原则能够引起免疫反应来强化溶瘤病毒的治疗效果。溶瘤病毒应用上最大的障碍在于其本身也是免疫系统的目标之一,因此往往需要采用瘤内注射或联合免疫抑制剂使用。而在一些处于临床早期的溶瘤病毒产品中,已经开始尝试着采用静脉注射这一常规给药途径,希望能够进一步拓展溶瘤病毒的应用前景。过继细胞疗法1984年,Linda Taylor来到美国国家癌症研究院,寻求治疗她所罹患的晚期转移性恶性黑色素瘤的方法。癌症免疫学家Steven Rosenberg接待了她。在分离了一部分Taylor的淋巴细胞后,研究人员将大剂量的IL-2用于刺激淋巴细胞,并把得到的淋巴因子活化杀伤细胞(LAK cell)输回到她体内。Taylor的病情逐渐稳定并恢复。近30年来,历史也见证了过继细胞疗法从第一代的LAK疗法,经细胞因子活化杀伤细胞CIK疗法、肿瘤浸润淋巴细胞TIL疗法、细胞毒性T淋巴细胞CTL疗法到第五代嵌合抗原受体T细胞CAR-T和肿瘤特异性T细胞受体基因工程细胞TCR-T的技术变革。Juno Therapeutics的CAR-T候选疗法JCAR015的I期临床结果显示,有91%的成年急性淋巴细胞白血病患者经JCAR015治疗后获得了完全缓解,尽管总生存期的延长并不显著,但所有人都对这种结合了基因工程和细胞疗法的崭新技术给予了厚望。T淋巴细胞对肿瘤细胞的识别依赖于T细胞受体TCR与肿瘤细胞表面MHC-抗原复合物的结合,而许多肿瘤细胞在不断的“进化”过程中形成了通过降低MHC表达等手段逃避T细胞识别的能力。针对这一困境,研究者们一方面通过基因突变和筛选寄希望于找到与MHC-抗原复合物具有高亲和力的基因工程TCR,另一方面试图通过让T细胞表达能绕过MHC直接结合肿瘤细胞表面抗原的受体来将T细胞“锚定”在肿瘤细胞上。这两种不同的研究方向分别催生了TCR-T和CAR-T的诞生。TCR-T技术作为传统过继细胞疗法技术的延伸,其识别肿瘤抗原的能力依赖于表达于抗原呈递细胞表面的主要组织相容性复合物(MHC),这在一定程度上限制了它在不同人群间的应用广度和整体效果。但TCR-T最大的优势在于其不但识别肿瘤细胞表面抗原,对于肿瘤细胞内的抗原同样能够通过MHC的提递而进行识别,这使得其针对的肿瘤类型相对于CAR-T要广得多。第五代过继细胞疗法的光芒虽然耀目,但就目前而言它依然无法撼动手术、化疗和放疗在肿瘤治疗领域的统治地位。在临床试验中CAR-T同样暴露出了许多亟需改善的问题和症结,如不明原因的疾病复发、致命的细胞因子风暴等等。单克隆抗体类免疫检查点(immune checkpoint inhibitor)抑制剂抗程序性死亡蛋白1(programmed death 1, PD-1)抗体是目前研究最多,临床发展最快的一种免疫疗法。PD-1起作用在免疫反应的效应阶段,其表达于活化的T细胞,B细胞及髓系细胞,其有两个配体,即程序性死亡分子配体-1(programmed death ligand 1, PD-L1)和PD-L2。PD-L1/L2在抗原提呈细胞都表达,PD-L1在多种组织也有表达。PD-1与PD-L1的结合介导T细胞活化的共抑制信号,抑制T细胞的杀伤功能,对人体免疫应答起到负调节作用。华裔科学家陈列平实验室首先发现PD-L1在肿瘤组织高表达,而且调节肿瘤浸润CD8+ T细胞的功能。因此,以PD-1/PD-L1为靶点的免疫调节对抗肿瘤有重要的意义。 PD-1/PD-L1抑制剂能够特异性地和肿瘤细胞上的PD-L1结合来抑制其表达,从而能够使功能受抑制的T细胞恢复对肿瘤细胞的识别功能,从而实现通过自身免疫系统达到抗癌作用。近年来,已有多种PD-1/PD-L1单克隆抗体在肿瘤免疫治疗的临床研究迅速开展。目前PD-1抑制剂Pembrolizumab和Nivolumab已被FDA批准用于晚期黑色素瘤、非小细胞肺癌、霍奇金淋巴瘤和头颈鳞癌等,Nivolumab还被FDA批准可用于治疗肾癌和尿路上皮癌等。此外,PD-L1抑制剂Atezolizumab和Durvalumab等单克隆抗体也已进入多个III期临床研究中,覆盖非小细胞肺癌、黑色素瘤、膀胱癌等多个瘤种。细胞毒性T淋巴细胞抗原4(cytotoxic T-lymphocyte antigen 4, CTLA-4)是表达于活化的T细胞表面的一种跨膜蛋白。CTLA-4作用于免疫反应的启动阶段,其激活能够抑制T细胞免疫应答的启动,从而导致活化的T细胞减少并阻止记忆性T细胞的生成。研究发现,肿瘤细胞能够激活CTLA-4,使活化的T细胞失去活性,从而实现了肿瘤自身的免疫逃逸(immune escape)。数个临床前研究发现,阻断CTLA-4后能够恢复T细胞的活性并延长记忆性T细胞的存活时间,从而恢复身体对肿瘤细胞的免疫功能,使得肿瘤的控制率提高,据此研发了抗CTLA-4 的特异性单克隆抗体。 目前两种CTLA-4抑制剂Ipilimumab已被FDA批准用于III期黑色素瘤的辅助治疗和晚期黑色素瘤的治疗, 而Ipilimumab和Tremelimumab在肾癌、前列腺癌、肺癌等的临床研究已广发开展。早期期临床研究结果显示两种单抗无论是单药还是联合IL-2、PD-1/PD-L1抑制剂或化疗均显示安全有效。其它如增强T细胞第二信号从而促进肿瘤特异性T细胞活化和增殖的单抗类,如肿瘤坏死因子TNF受体家族的OX40和4-1BB单抗尚在研发中。2014年末,Science杂志对2015年科技的重要突破做出了预测,联合免疫疗法也在其中。早在上个世纪人们就意识到,癌症远远不是源自正常细胞一个基因、一个蛋白的改变,联合疗法才是癌症治疗的关键。上海敦复医院是上海第一批开展肿瘤免疫治疗的医院,目前已经为2500人次提供了肿瘤免疫治疗,如果你有肿瘤免疫治疗需求,请联系我们>>40 08 9 99 8 200医药学发展的基石是生命科学,随着对肿瘤生成发展现象的研究不断深入和突破,疾病治疗手段将更加丰富多样。在不远的未来,针对高效低毒的新型肿瘤靶点的药物研发、细胞疗法的安全性和经济性改造、克服耐药性的联合用药方案以及以预防和早期发现为主的精准医疗将是癌症治疗领域最为引人关注的方向。而免疫治疗恰恰是最为有希望的关键点!
理工学科是什么
理工学科是指理学和工学两大学科。理工,是一个广大的领域包含物理、化学、生物、工程、天文、数学及前面六大类的各种运用与组合。
理学
理学是中国大学教育中重要的一支学科,是指研究自然物质运动基本规律的科学,大学理科毕业后通常即成为理学士。与文学、工学、教育学、历史学等并列,组成了我国的高等教育学科体系。
理学研究的内容广泛,本科专业通常有:数学与应用数学、信息与计算科学、物理学、应用物理学、化学、应用化学、生物科学、生物技术、天文学、地质学、地球化学、地理科学、资源环境与城乡规划管理、地理信息系统、地球物理学、大气科学、应用气象学、海洋科学、海洋技术、理论与应用力学、光学、材料物理、材料化学、环境科学、生态学、心理学、应用心理学、统计学等。
工学
工学是指工程学科的总称。包含 仪器仪表 能源动力 电气信息 交通运输 海洋工程 轻工纺织 航空航天 力学生物工程 农业工程 林业工程 公安技术 植物生产 地矿 材料 机械 食品 武器 土建 水利测绘 环境与安全 化工与制药 等专业。
北京理工大学化学类专业怎么样
找工作的话北化往往会比北理工有竞争力,那边教学相对好些。
但是北理工985的牌子不是吃干饭的,大学有些东西跟高中不一样。整体实力是非常重要的。
单说这边化学类专业的话,理学院有应化、化学,材料学院有材化、高分子,其中应化相对较好,但是好坏这东西很难说,跟学生自己关系很大。
怎么说呢,有一点能确定,只要你自己够努力,北理工任何专业的牌子都绝对不会托你后腿。
不过说回来,全国大环境看,化学类专业就业都不咋样,要是有机会还是学学自动化车辆啥的吧。
最近实验要做MAPK靶点的信号通路,哪位大神给介绍下相关抑制剂啊?
关于MAPK:丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是一组能被不同的细胞外刺激,如细胞因子、神经递质、激素、细胞应激及细胞黏附等激活的丝氨酸-苏氨酸蛋白激酶。由于MAPK是培养细胞在收到生长因子等丝裂原刺激时被激活而被鉴定的,因而得名。所有的真核细胞都能表达MAPK。MAPK通路的基本组成是一种从酵母到人类都保守的三级激酶模式,包括MAPK激酶激酶(MAP kinasekinase kinase,MKKK)、MAPK激酶(MAP kinase kinase,MKK)和MAPK,这三种激酶能依次激活,共同调节着细胞的生长、分化、对环境的应激适应、炎症反应等多种重要的细胞生理/病理过程。信号通路图:相关抑制剂:Selumetinib(AZD6244)是一种有效,高选择性的MEK1抑制剂,IC50为14 nM,也抑制ERK1/2磷酸化,IC50为10 nM,对p38α, MKK6, EGFR, ErbB2, ERK2, B-Raf等没有抑制作用。Phase 3。Vemurafenib(PLX4032, RG7204)是一种新型有效的B-RafV600E抑制剂,IC50为31 nM。SB203580是一种p38 MAPK抑制剂,IC50为0.3-0.5 μM,与SAPK3(106T)和SAPK4(106T)相比选择性低10倍,且抑制PKB磷酸化,IC50为3-5 μM。参考:www.selleck.cn/pharmacological_MAPK.html
教育的意义是什么
教育的意义不是为了适应外界,而是为了自己内心的丰富。教育是人类灵魂的教育,而非理智知识和认识的堆积。教育本身意味着:一棵树摇动另一棵树,一朵云去推动另一朵云,一个灵魂去唤醒另一个灵魂。”—— 雅斯贝尔斯教育是每个时代亘古不变的文化传播手段,没有教育的国家,缺乏教育的国家就是过家家。对于一个家庭而言,教育就是家庭幸福,稳定安康的前提,没有教育,就好比石缝中的枯草,缺乏养分,难以遍地开花。可见人跟教育之间的关系,好比鱼离不开水,花草离不开土壤,万物离不开阳光。网上前段时间有一个段子:说之所以要多读书、多受教育,就是因为当我们看到一群鸟在湖面飞过的时候,能够吟诵出“落霞与孤鹜齐飞,秋水共长天一色”,而不是在那吵吵:我去,全都是鸟!在我们去戈壁旅游、骑着骏马奔腾之时,心里默念着“大漠孤烟直,长河落日圆”,而不是在那喊:哎呀妈呀,都是沙子,快回去吧!这当然是一种调侃,但是不自觉间就道出了教育的核心含义。教育还是应该回到像孔子说的,孟子说的,包括蒙田说的,“教育不是为了适应外界,而是为了自己内心的丰富。”古希腊有个哲学家叫西塞罗,他说“教育的目的是让学生摆脱现实的奴役,而非适应现实”。教育,不仅传授知识,更能提高个人修为,增加我们对生活的感受力,从而认知自己,并不断提高自己。我认为,这是教育赋予重要价值和意义,也是指引我们前行。扩展资料:1、儿童不是尚未长成的大人,儿童期有其自身的内在价值如果用外部功利目的来规范教育,无视生长本身的价值,一个最直接的负面影响就是否定儿童期的内在价值。这会把儿童看作一个未来的存在,一个尚未长成的大人,在长大成人之前似乎无甚价值。于是教育的目标就变成了使儿童为未来的成人生活做好准备。这种荒谬错误观念由来已久,而且流传极广。长大成人的提法本身就愚蠢透顶,仿佛在长大之前儿童不是人似的!蒙台梭利首先明确地批判这种观念,在确定儿童的人格价值的基础上建立了他的儿童教育理论。杜威也指出,儿童期生活有其内在的品质和意义,不可把它当作人生中一个未成熟阶段,只想让它快快地过去。人生的各个阶段皆有其自身不可取代的价值,尤其是儿童期。儿童阶段是身心生长最重要的阶段,也应是人生中最幸福的时光,教育所能成就的最大功德是给孩子一个幸福而有意义的童年,以此为他们幸福而有意义的一生创造良好的基础。然而,今天的普遍情形是,整个成人世界纷纷把自己渺小的功利目标强加给孩子,驱赶他们到功利战场上拼搏。而实际上,在若干年后的社会中,童年价值被野蛮剥夺的恶果就会以可怕的方式显现出来。2、教育的目的是让学生摆脱现实的奴役,而非适应现实这是西塞罗的名言。今天的情形恰好相反——教育正在全力做一件事,就是以适应现实为目标塑造学生。人在社会上生活,当然有适应现实的必要,但这不该是教育的主要目的。蒙田说:学习不是为了适应外界,而是为了丰富自己。孔子也主张,学习是为己而非为人的事情。古往今来的哲人都强调,学习是为了发展个人内在的精神能力,从而在外部现实面前获得自由。当然,这只是一种内在自由。但是,正是凭借这种内在自由,这种独立人格和独立思考能力,那些优秀的灵魂和头脑对于改变人类社会的现实发生了伟大的作用。教育就应该为促进内在自由、产生优秀的灵魂和头脑创造条件。如果只是适应现实,只要把孩子当成动物一样训练就好了。
教育的概念是什么?
教育是什么?——一种让人们变得更好的过程引言:教育是人类社会始终以来一直存在的一项重要事业。它是培养和提高人们的知识、技能和道德素质的手段,是个人成长和社会进步的重要保障。本文将从教育的定义、目的、方式、环境等多个角度为您详细介绍教育的本质。一、教育的定义教育是一种系统性、有计划、有组织、有目的、有感染力地影响个人行为和发展的活动。在教育过程中,人们以某种方式去改变他人的认识、态度、思想和行为。教育可以通过各种信息,如书本学习、教师讲授、实践、实验和社交互动等方式来传递知识。二、教育的目的教育旨在提升个人的能力,包括知识、技能、道德和文化价值观等方面。教育的核心目标是让人们变得更好,成为独立自主、有创造力、有责任心的人。教育旨在培养学生的思维能力、沟通能力、合作能力和批判性思维能力,从而为他们的未来做好准备。三、教育的方式教育的方式包括通过组织的课程、活动和体验来传授知识和技能,以及通过比如家庭、社区、职场等环境中的自发学习和社交互动来获得经验和智慧。四、教育的环境教育发生的环境是多样的,包括学校、家庭、社区、工作场所和网络等。在不同的环境下,教育的方法和形式也是不同的,根据不同的需求,选择适当的教育方式和场所,有助于提升学习者的学习成效。结论:总的来说,教育是一项综合性的工作,其目的在于培养和提高个人的能力,以使他们能够更好地适应现代社会的变化和挑战。通过多种方式、不同环境下的教育,我们可以促进个体的成长和社会的进步。
CCR5的问题展望
辅助受体CCR5是目前抗HIV-1感染的首选靶点,因此对HIV?1利用辅助受体(CCR5和CXCR4)侵入靶细胞机制的逐步阐明将有利于更有效地研制出抗HI药物。不同的辅助受体在不同类型的细胞中存在不同的构像,因此作为一个抑制趋化因子受体发生作用的试剂,它应该能够识别与结合该受体的不同结合位点或不同的构象,并且不会影响辅助受体天然的趋化因子配体的正常生理功能。研究已经证实不同类型的CCR5拮抗剂具有不同的阻断机制。小分子拮抗剂通过改变CCR5EL-2构象使之不能识别HIV?1的V3区达到抑制的效果;而CCR5的单克隆抗体拮抗剂识别CCR5的Nt表位并有效阻断gp120结合于辅助受体,但不阻断病毒的入侵;相反,具有识别不同表位的两种单克隆抗体能高效阻断病毒入侵却并不能阻断gp120的结合。研究者们认为,判断拮抗剂抗病毒活性的标准不是单一地看拮抗剂与CCR5的结合亲和力,其它的一些指标如拮抗剂从CCR5上分离的速率及其它一些生理特性也十分重要。尽管辅助受体拮抗剂可有效预防HIV-1感染,遏制AIDS的流行,但是该类抑制剂的发展也面临着挑战。长期使用一种抑制剂,最终会使HIV-1产生耐药性,不幸的是,几乎所有的小分子拮抗剂都会产生耐药性,也有实验显示,耐药株的产生与HIV-1gp120的200个氨基酸组成有关。通过点突变实验证明gp120C2?V5结构域(271~386位氨基酸)的关键作用,Westby等人发现V3的315~317位氨基酸残基的缺失与小分子拮抗剂UK?427,857相关。所以,开发有效且防止耐药性病毒株产生是当前各类拮抗剂需要面对的关键问题。由于趋化因子(RANTES,MIP-1α及MIP-1β)受体CCR5与gp120的接触涉及多个位点(N-末端,EL,TM),因此与其单一位点相互作用的CCR5拮抗剂的发展空间有限;而针对CCR5上多个位点的疫苗及其诱生的抗体将对CCR5起到屏蔽作用,使其失去充当HIV-1辅助受体的能力,并且不会对人体的正常生理功能产生影响,因此针对辅助受体多位点的拮抗剂研究将是大势所趋。此外,为了研制更具耐药性的抗HIV药物,或许将辅助受体抑制剂(尤其是CCR5拮抗剂)与病毒生命周期其它环节的抑制剂如逆转录酶抑制剂、蛋白酶抑制剂和融合抑制剂联合应用,可以最大程度抑制病毒复制,并且联合用药是将来治疗AIDS的主要方向。
CCR5的概况
自1981年发现第一例由人类免疫缺陷病毒(HIV)引起的传染性疾病———获得性免疫缺陷综合症(简称艾滋病,AIDS)的25年以来,尽管对艾滋病的临床治疗已有了很大进展,但是仍无有效治愈手段可以攻破此科学难题。研究表明,HIV可分为HIV-1和HIV-2两种亚型,HIV-1致病力强,是引起AIDS的主要病原体。目前已有30多种抗HIV-1药物得到美国食品与药品监督管理局(FDA)批准,其中17种是逆转录酶抑制剂(包括13种核苷类逆转录酶抑制剂及4种非核苷类逆转录酶抑制剂),11种蛋白酶抑制剂,1种CCR5受体抑制剂(maraviroc),1种整合酶抑制剂(raltegravir)以及1种融合抑制剂(T20)。然而,已被批准的药物中没有一种是可以完全抑制病毒感染的,而且由于HIV-1突变株的产生,大部分均对不同类型的拮抗剂具有耐药性。此外,随着对病毒入侵过程的深入了解,研究者发现,除了病毒入侵所必须的CD4受体外,重要的辅助受体如CCR5或CXCR4,在gp120与CD4识别后发生的构象变化中起到了至关重要的作用。因此,研究者们渐渐将目光转移到了这个新的靶点,目前已有几种CCR5抑制剂正处于临床前和临床试验中,并且还有一套评价利用CCR5拮抗剂来控制HIV-1病毒感染的临床前试验方法用于药物的研究[1,2]。病毒入侵过程是一个级联的结合与构象变化反应,因此,根据病毒入侵复制裂解的不同阶段,拮抗剂可分为病毒入侵拮抗剂(如CD4拮抗剂、辅助受体拮抗剂)、逆转录酶拮抗剂、融合拮抗剂、整合酶拮抗剂、蛋白酶抑制剂等。而针对辅助受体CCR5的拮抗剂又可分为趋化因子衍生物、非肽类小分子化合物、单克隆抗体、肽类化合物等4类。
理工科有哪些专业?
理工科专业有:1、天文学:是研究宇宙空间天体、宇宙的结构和发展的学科。内容包括天体的构造、性质和运行规律等。主要通过观测天体发射到地球的辐射,发现并测量它们的位置、探索它们的运动规律、研究它们的物理性质、化学组成、内部结构、能量来源及其演化规律。2、工程:工程是科学和数学的某种应用,通过这一应用,使自然界的物质和能源的特性能够通过各种结构、机器、产品、系统和过程,是以最短的时间和最少的人力、物力做出高效、可靠且对人类有用的东西。将自然科学的理论应用到具体工农业生产部门中形成的各学科的总称。3、生物学:现代生物学是一个庞大而兼收并蓄的领域,由许多分支和分支学科组成。然而,尽管生物学的范围很广,在它里面有某些一般和统一概念支配一切的学习和研究,把它整合成单一的,和连贯的领域。在总体上,生物认识到细胞作为生命的基本单位,基因作为遗传的基本单元,和进化是推动新物种的合成和创建的引擎。4、化学:化学是自然科学的一种,在分子、原子层次上研究物质的组成、性质、结构与变化规律;创造新物质的科学。化学内容一般分为生物化学、有机化学、高分子化学、应用化学和化学工程学、物理化学、无机化学等七大类共80项,实际包括了七大分支学科。5、物理学:物理学是研究物质运动最一般规律和物质基本结构的学科。普通物理学的主要课程有:高等数学、力学、热学、光学、电磁学、原子物理学、固体物理学、结构和物性。理论物理学的主要课程有:数学物理方法、理论力学、热力学与统计物理、电动力学、量子力学、计算物理学入门等。参考资料:理工科-百度百科