在2015版微生物限度检查法的验证中,验证实验用菌种有哪几种?
药品微生物限度检查是控制药品质量的一个重要检查项目。中国药典2005年版规定,不同的药品微生物限度检查中的细菌数、霉菌及酵母菌数测定、各控制菌的检查,必须按照经过验证的方法进行。一些中西药制剂由于药品本身的理化性质及抑菌活性,干扰药品污染的微生物计数测定和控制菌的检出,带来检查结果的不准确性。如在细菌数测定中,低稀释级的平均平板菌落数低于高稀释级,呈现细菌的不正常分布,即药品显现出干扰或抑菌作用;反映在控制菌检查中,阳性对照试验呈阴性反应,其检验结果不能反映药品被微生物污染的真实状况,得出不准确的结果或假阴性结果。由于2005年版以前的中国药典,没有要求对微生物限度检查中的各项目进行方法学验证,以至于这类方法学问题越来越多,影响微生物限度检查结果的准确性。2002年10月~2003年4月我所参加中检所组织药品微生物限度检查方法验证试验协作课题。选择了4种审核检验的中西药制剂品种,其原药品标准没有进行微生物限度检查方法验证考察,也未见相关文献报道。为对微生物限度检查方法进行考察,选用4种代表菌做了微生物计数的菌回收率试验。根据各品种的要求对控制菌做检出率测定的研究。得出的结果说明这些药品微生物限度检查方法存在的问题,并为该课题提供了试验数据。
发酵罐有哪些功能?
发酵罐,指工业上用来进行微生物发酵的装置。其主体一般为用不锈钢板制成的主式圆筒,其容积在1m3至数百m3。在设计和加工中应注意结构严密,合理。能耐受蒸汽灭菌、有一定操作弹性、内部附件尽量减少(避免死角)、物料与能量传递性能强,并可进行一定调节以便于清洗、减少污染,适合于多种产品的生产以及减少能量消耗。上海艾研生物科技有限公司是一家专业经营进口实验室试剂、化工产品、实验室消耗品以及实验室器材。公司INFORS发酵罐独特的设计使Minifors灵活性极强,简单易用,操作界面化,减少用户的工作量,也节约了用户大量浪费在发酵罐维护上的时间。采用Infors 特有的金属模块夹套加热,内嵌冷却水循环回路用于控制温度,温度控制范围:高于室温培养,无需水浴降温, 减少了罐体周围的水环境, 大大降低了培养过程中染菌的概率, 低于室温培养,可以直接连接冷水机通过内嵌冷却水循环回路进行降温, 工作温度范围: 冷却介质温度+5℃-60℃。超紧凑机身设计, 不仅节省实验室空间, 管路总长度也减少30%-50%, 大大减少染菌的概率。
发酵罐的各个部件各有什么功能?
传动部件: 是传动装置,是电动机和搅拌器链接部件
机械密封:阻止外界气体,微生物进入发酵罐
电动机: 搅拌器的动力来源
入孔: 加料
取样口: 取小量样品检验
冷却水出口: 导出冷却水
温度计口: 放置温度计进行温度监测
视镜: 观察发酵罐内部
进气口、排料口:通入洁净空气,,,,放出发酵物出口
仪表口:搁置仪器显示器
热电偶口: 热和电的传感器将热信号转换为电信号
PH电极口:PH的监测器,就是酸碱度的检测器
冷却水进口: 输入冷却水,当发酵温度高是进水
打泡器: 可以产生气泡,使空气中的氧气溶解在发酵液中
搅拌机构:搅拌,使发酵物分散均匀,使温度,氧气,PH 分散均匀
发酵罐的使用方法
1) 校正pH电极和溶氧电极。2) 罐体灭菌。根据需要将培养基配入罐体,按要求封好后,小型发酵罐(5L)可将罐体放入大灭菌锅灭菌(115℃,30分钟);大型发酵罐(10L及以上)采用蒸汽灭菌(121℃,30min)。3) 待罐体冷却后,将其置于发酵台上,安装完好;打开冷却水,打开气泵电源,连接通气管道开始通气,调节进气旋钮使通气量适当,使罐压保持在0.05MPa;设置温度、pH、搅拌速度等,并在确定的转速和通气量下对溶氧电极进行斜率标定,数值为100%4) 待温度稳定,各项参数都正确后,将预摇好的种子接入,开始发酵计时,并开始记录各种参数。5) 发酵完毕后清洗罐体和电极,将pH电极插入有3M氯化钾的三角瓶中待用,溶氧电极的探头用保护套套好,保存备用。
发酵罐使用前应该做什么技术准备?
发酵罐,指工业上用来进行微生物发酵的装置。其主体一般为用不锈钢板制成的主式圆筒,其容积在1m3至数百m3。在设计和加工中应注意结构严密,合理。能耐受蒸汽灭菌、有一定操作弹性、内部附件尽量减少(避免死角)、物料与能量传递性能强,并可进行一定调节以便于清洗、减少污染,适合于多种产品的生产以及减少能量消耗。用于厌气发酵(如生产酒精、溶剂)的发酵罐结构可以较简单。用于好气发酵(如生产抗生素、氨基酸、有机酸、维生素等)的发酵罐因需向罐中连续通入大量无菌空气,并为考虑通入空气的利用率,故在发酵罐结构上较为复杂,常用的有机械搅拌式发酵罐、鼓泡式发酵罐和气升式发酵罐。乳制品、酒类发酵过程是一个无菌、无污染的过程,发酵罐采用了无菌系统,避免和防止了空气中微生物的污染,大大延长了产品的保质期和产品的纯正,罐体上特别设计安装了无菌呼吸气孔或无菌正压发酵系统。罐体上设有米洛板或迷宫式夹套,可通入加热或冷却介质来进行循环加热或冷却。发酵罐的容量由300-15000L多种不同规格。发酵罐按使用范围可分为实验室小型发酵罐、中试生产发酵罐、大型发酵罐等。发酵罐广泛应用于乳制品、饮料、生物工程、制药、精细化工等行业,罐体设有夹层、保温层、可加热、冷却、保温。罐体与上下填充头(或锥形)均采用旋压R角加工,罐内壁经镜面抛光处理,无卫生死角,而全封闭设计确保物料始终处一无污染的状态下混合、发酵,设备配备空气呼吸孔,CIP清洗喷头,人孔等装置。
下列叙述错误的是( )A.基因工程中拼接基因的工具--DNA连接酶B.搬运目的基因的运载工具-细菌质粒或
A、基因工程中拼接基因的工具是DNA连接酶,即连接两个具有相同末端的DNA片段,A正确;B、搬运目的基因的运载工具是运载体,常用的是运载体是细菌质粒或噬菌体,B正确;C、由于细菌等原核细胞多为单细胞生物,繁殖速度快,则大量表达目的基因常用将细菌在发酵罐内发酵,C正确;D、基因工程中剪切基因的工具是限制酶,D错误.故选:D.
发酵工程试题答案?
一、名称解释
1、前体 指某些化合物加入到发酵培养基中,能直接彼微生物在生物合成过程中合成到产物物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入前体而有较大的提高。
2、发酵生长因子 从广义上讲,凡是微生物生长不可缺少的微量的有机物质,如氨基酸、嘌呤、嘧啶、维生素等均称生长因子
3、菌浓度的测定 是衡量产生菌在整个培养过程中菌体量的变化,一般前期菌浓增长很快,中期菌浓基本恒定。补料会引起菌浓的波动,这也是衡量补料量适合与否的一个参数。
4、搅拌热 :在机械搅拌通气发酵罐中,由于机械搅拌带动发酵液作机械运动,造成液体之间,液体与搅拌器等设备之间的摩擦,产生可观的热量。搅拌热与搅拌轴功率有关
5、分批培养 :简单的过程,培养基中接入菌种以后,没有物料的加入和取出,除了空气的通入和排气。整个过程中菌的浓度、营养成分的浓度和产物浓度等参数都随时间变化。
6、接种量 : 移入种子的体积
接种量= —————————
接种后培养液的体积
7、比耗氧速度或呼吸强度 单位时间内单位体积重量的细胞所消耗的氧气,mmol O2•g菌-1•h-1
8、次级代谢产物 是指微生物在一定生长时期,以初级代谢产物为前体物质,合成一些对微生物的生命活动无明确功能的物质过程,这一过程的产物,即为次级代谢产物。
9、实罐灭菌 实罐灭菌(即分批灭菌)将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所用设备加热至灭菌温度后维持一定时间,在冷却到接种温度,这一工艺过程称为实罐灭菌,也叫间歇灭菌。
10、种子扩大培养 :指将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养,最终获得一定数量和质量的纯种过程。这些纯种培养物称为种子。
11、初级代谢产物 是指微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活动所需要的物质和能量的过程。这一过程的产物即为初级代谢产物。
12、倒种 :一部分种子来源于种子罐,一部分来源于发酵罐。
P 147
13、维持消耗(m) 指维持细胞最低活性所需消耗的能量,一般来讲,单位重量的细胞在单位时间内用于维持消耗所需的基质的量是一个常数。
14、产物促进剂 是指那些非细胞生长所必须的营养物,又非前体,但加入后却能提高产量的添加剂
15、补料分批培养 :在分批培养过程中补入新鲜的料液,以克服营养不足而导致的发酵过早结束的缺点。
在此过程中只有料液的加入没有料液的取出,所以发酵结束时发酵液体积比发酵开始时有所增加。在工厂的实际生产中采用这种方法很多。
16、发酵热 :所谓发酵热就是发酵过程中释放出来的净热量。什么叫净热量呢?在发酵过程中产生菌分解基质产生热量,机械搅拌产生热量,而罐壁散热、水分蒸发、空气排气带走热量。这各种产生的热量和各种散失的热量的代数和就叫做净热量。发酵热引起发酵液的温度上升。发酵热大,温度上升快,发酵热小,温度上升慢。
17、染菌率 总染菌率指一年发酵染菌的批(次)数与总投料批(次)数之比的百分率。染菌批次数应包括染菌后培养基经重新灭菌,又再次染菌的批次数在内
18、连续培养 : 发酵过程中一边补入新鲜料液一边放出等量的发酵液,使发酵罐内的体积维持恒定。
达到稳态后,整个过程中菌的浓度,产物浓度,限制性基质浓度都是恒定的。
19、临界溶氧浓度 指不影响呼吸所允许的最低溶氧浓度
20、回复突变 由突变型回到野生型的基因突变
21、种子 见种子扩大培养
22、培养基 广义上讲培养基是指一切可供微生物细胞生长 繁殖所需的一组营养物质和原料。同时培养基也为微生物培养提供除营养外的其它所必须的条件。
23、发酵工程:利用微生物特定性状和功能,通过现代化工程技术生产有用物质或直接应用于工业化生产的技术体系,是将传统发酵于现代的DNA重组、细胞融合、分子修饰和改造等新技术集合并发展起来的发酵技术。
二、填空题
1、 微生物发酵培养(过程)方法主要有 分批 培养、补料分批 培养、连续 培养、半连续 培养四种。
2、 微生物生长一般可以分为:调整期、对数期、稳定期和衰亡期。
3、 发酵过程工艺控制的只要化学参数 溶解氧、PH、核酸量等.
4、 发酵过程控制的目的就是得到最大的比生产率和最大的得率。
5、 菌种分离的一般过程 采样、富集、分离、目的菌的筛选。
6、 富集培养目的就是让 目的菌 在种群中占优势,使筛选变得可能。
7、 根据工业微生物对氧气的需求不同,培养法可分为 好氧培养 和 厌氧培养 两种。
8、 微生物的培养基根据生产用途只要分为 孢子 培养基、种子 培养基和发酵培养基。
9、 常用灭菌方法:化学灭菌、射线灭菌、干热灭菌、湿热灭菌
10、 常用工业微生物可分为: 细菌、 酵母菌、 霉菌、 放线菌四大类。
11、 发酵过程工艺控制的代谢参数中物理参数 温度、压力、搅拌转速、功率输入、流加数率和质量 等
12、 环境无菌的检测方法有:显微镜检查法、肉汤培养法、平板培养法、发酵过程的异常观察法等
13、 染菌原因: 发酵工艺流程中的各环节漏洞和发酵过程管理不善两个方面。
14、 实验室中进行的发酵菌液体发酵方式主要有四种:试管液体培养、浅层液体培养、摇瓶培养、台式发酵罐
15、 发酵高产菌种选育方法包括 (自然选育)、(杂交育种)、(诱变育种)、(基因工程育种)、(原生质体融合)。
16、 发酵产物整个分离提取路线可分为:预处理、固液分离、初步纯化、精细纯化和成品加工加工等五个主要过程。
17、 发酵过程主要分析项目如下 :pH、排气氧、排气CO2和呼吸熵、糖含量、氨基氮和氨氮、磷含量、菌浓度和菌形态。
18、 微生物调节其代谢采用 酶活性、酶合成量、细胞膜的透性。
19、 工业微生物菌种可以来自 自然分离,也可以来自从微生物 菌种保藏机构 单位获取。
20、 发酵工业上常用的糖类主要有 葡萄糖、糖蜜。
21、 工业发酵方式根据所用菌种是单一或是多种可以分为 单一纯种 发酵和 混合 发酵。
22、 种子及发酵液进行无菌状况控制常用的方法 显微镜检测法、酚红肉汤培养基法、平板画线培养法、发酵过程的异常观察法。
23、 菌种的分离和筛选一般分为 采样、富集、分离、目的菌的筛选步骤。
24、 菌种的分离和筛选一般可分为________。
25、 常用灭菌方法有:化学灭菌、射线灭菌、干热灭菌、湿热灭菌
三、问答题
1、发酵工程的概念是什么?发酵工程基本可分为那两个大部分,包括哪些内容?
答:发酵工程是利用微生物特定性状好功能,通过现代化工程技术生产有用物质或其直接应用于工业化生产的技术体系,是将传统发酵与现代的DNA重组、细胞融合、分子修饰和改造等新技术结合并发展起来的发酵技术。也可以说是渗透有工程学的微生物学,是发酵技术工程化的发展,由于主要利用的是微生物发酵过程来生产产品,因此也称为微生物工程。
一.发酵部分: 1.菌种的特征和选育
2.培养基的特性,选择及其灭菌理论
3.发酵液的特性
4.发酵机理。
5.发酵过程动力学
6.空气中悬浮细菌微粒的过滤机理
7.氧的传递。溶解。吸收。理论。
8.连续培养和连续发酵的控制
二.提纯部分
1.细胞破碎,分离
2.液输送,过滤. 除杂
3.离子交换渗析,逆渗透,超滤
4.凝胶过滤,沉淀分离
5溶媒萃取,蒸发蒸馏结晶,干燥,包装等过程和单元操作
2、现代发酵工程所用的发酵罐应具备那些特征?
答:(1)、发酵罐应有适宜的径高比。罐身较长,氧的利用率较高;
(2)、发酵罐应能承受一定的压力。因为发酵罐在灭菌和正常工作时,要承受一定的压力(气压和液压)和温度;
(3)、发酵罐的搅拌通风装置能使气液充分混合,实现传质传热作用,保证微生物发酵过程中所需的溶解氧;
(4)、发酵罐内应尽量减少死角,避免藏污纳垢,保证灭菌彻底,防止染菌;
(5)、发酵罐应具有足够的冷却面积;
(6)、搅拌器的轴封要严密,以减少泄露。
3、微生物发酵的种子应具备那几方面条件?
答:(1)、菌种细胞的生长活力强,移种至发酵罐后能迅速生长,迟缓期短。
(2)、生理性状稳定。
(3)、菌体总量及浓度能满足大量发酵罐的要就。
(4)、无杂菌污染。
(5)、保持稳定的生产能力。
4、发酵工业上常用的氮源有那些,起何作用?
答:氮源主要用于构成菌体细胞物质(氨基酸,蛋白质、核酸等)和含氮代谢物。常用的氮源可分为两大类:有机氮源和无机氮源。
1、无机氮源
种类:氨盐、硝酸盐和氨水
特点:微生物对它们的吸收快,所以也称之谓迅速利用的氮源。但无机氮源的迅速利用常会引起pH的变化如:
(NH4)2SO4 → 2NH3 + 2H2SO4
NaNO3 + 4H2 → NH3 + 2H2O + NaOH
无机氮源被菌体作为氮源利用后,培养液中就留下了酸性或碱性物质,这种经微生物生理作用(代谢)后能形成酸性物质的无机氮源叫生理酸性物质,如硫酸胺,若菌体代谢后能产生碱性物质的则此种无机氮源称为生理碱性物质,如硝酸钠。正确使用生理酸碱性物质,对稳定和调节发酵过程的pH有积极作用。
所以选择合适的无机氮源有两层意义:
满足菌体生长
稳定和调节发酵过程中的pH
2、有机氮源
来源:工业上常用的有机氮源都是一些廉价的原料,花生饼粉、黄豆饼粉、棉子饼粉、玉米浆、玉米蛋白粉、蛋白胨、酵母粉、鱼粉、蚕蛹粉、尿素、废菌丝体和酒糟。
成分复杂:除提供氮源外,有些有机氮源还提供大量的无机盐及生长因子。
有机氮源成分复杂可以从多个方面对发酵过程进行影响,而另一方面有机氮源的来源具有不稳定性。所以在有机氮源选取时和使用过程中,必须考虑原料的波动对发酵的影响
5、发酵产品的生产特点是什么,什么是种子扩大培养,其任务是什么?
答: (2)、种子扩大培养是指将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养,最终获得一定数量和质量的纯种过程。这些纯种培养物称为种子。
(3)、种子扩大培养的任务: 现代的发酵工业生产规模越来越大,每只发酵罐的容积有几十立方米甚至几百立方米,•要使小小的微生物在几十小时的较短时间内,完成如此巨大的发酵转化任务,那就必须具备数量巨大的微生物细胞才行。
(1)发酵和其他化学工业的最大区别在于它是生物体所进行的化学反应。其主要特点如下:
1,发酵过程一般来说都是在常温常压下进行的生物化学反应,反应安全,要求条件也比较简单。
2,发酵所用的原料通常以淀粉、糖蜜或其他农副产品为主,只要加入少量的有机和无机氮源就可进行反应。微生物因不同的类别可以有选择地去利用它所需要的营养。基于这—特性,可以利用废水和废物等作为发酵的原料进行生物资源的改造和更新。
3,发酵过程是通过生物体的自动调节方式来完成的,反应的专一性强,因而可以得到较为单—的代谢产物。
4,由于生物体本身所具有的反应机制,能够专一性地和高度选择性地对某些较为复杂的化合物进行特定部位地氧化、还原等化学转化反应,也可以产生比较复杂的高分子化合物。
5,发酵过程中对杂菌污染的防治至关重要。除了必须对设备进行严格消毒处理和空气过滤外,反应必须在无菌条件下进行。如果污染了杂菌,生产上就要遭到巨大的经济损失,要是感染了噬菌体,对发酵就会造成更大的危害。因而维持无菌条件是发酵成败的关键。
6,微生物菌种是进行发酵的根本因素,通过变异和菌种筛选,可以获得高产的优良菌株并使生产设备得到充分利用,也可以因此获得按常规方法难以生产的产品。
7,工业发酵与其他工业相比,投资少,见效快,开可以取得显著的经济效益。
基于以上特点,工业发酵日益引起人们重视。和传统的发酵工艺相比,现代发酵工程除了上述的发酵特征之外更有其优越性。除了使用微生物外,还可以用动植物细胞和酶,也可以用人工构建的“工程菌’来进行反应;反应设备也不只是常规的发酵罐,而是以各种各样的生物反应器而代之,自动化连续化程度高,使发酵水平在原有基础上有所提高和和创新。
发酵产品的生产特点:
①一般操作条件比较温和;
②以淀粉、糖蜜等为主,辅以少量有机、无机氮源为原料;
③过程反应以生命体的自动调节方式进行;
④能合成复杂的化合物如酶、光学活性体等;
⑤能进行一些特殊反应,如官能团导入;
⑥生产产品的生物体本身也是产物,含有多种物质;
⑦生产过程中,需要防止杂菌污染;
⑧菌种性能被改变,从而获得新的反应性能或提高生产率。
6、培养成分用量的确定有什么规律?
答: (1)、参照微生物细胞内元素的比例确定。培养基的成分配比虽然千差万别,但都是用来培养某种微生物的,而不同类型的微生物细胞的成分比例其实是有一定规律的。这些规律可以在很大程度上知道培养基的基本成分配比的选择。
不同种类的微生物内某种成分的含量其实是比较稳定的。培养基最终会被微生物吸收利用,因此其成分比例可以参考该种微生物的成分比例,至少可以作为一个重要依据。另外,尽管不同种类的微生物的成分比例有一定的差异,但还是有一定共性的。所以培养基中这集中营养成分不管由什么具体物质提供,其用量基本上也符合这种关系。
(2)参照碳氮比确定。如果培养基中碳源过多,不利产物的合成。同样碳源过少或氮源过少对发酵的影响也是不利的。不同种微生物碳氮比差异很大,既是同种微生物在其不同生理时期对碳氮比要求也有不同,所以最适碳氮比要通过试验确定,一般在100:(1—20)之间。
(3)、其他因素。培养基中一些用量极少的物质一般要严格控制,不能过量。例如,维生素、微量元素、某些生长因子、前体等。具体用量要通过试验确定。培养基中的一些成分的比例会影响培养基的某些理化性质,这时要引起重视。
7、叙述防止发酵菌种退化的具体条件措施有那些?
答:(1)控制传代次数:尽量避免不必要的移种和传代,并将必要的传代降低到最低限度,以减少细胞分裂过程中所产生的自发突变几率。
(2)创造良好的培养条件:如在赤霉素生产菌G.fujikuroi的培养基中,加入糖蜜、天冬酰胺、谷氨酰胺、5‘-核苷酸或甘露醇等丰富营养物时,有防止衰退效果。
(3)利用不易衰退的细胞传代:对于放线菌和霉菌,菌丝细胞常含有几个细胞核,因此用菌丝接种就易出现衰退,而孢子一般是单核的,用于接种就可避免这种现象。
(4)采用有效的菌种保藏方法
(5)合理的育种:选育菌种是所处理的细胞应使用单核的,避免使用多核细胞;合理选择诱变剂种类或增加突变位点,以减少分离回复突变;在诱变处理后及分离提纯化,从而保证保藏菌种的纯度。
(6)、选用合适的培养基 在培养基中添加某种化学物质可以防止菌种退化。或者选取营养相对贫乏的培养基在菌种保藏培养基,限制菌株的生长代谢减少变异反而发生从而防止菌种的退化。
8、如何选择最适发酵温度?
答:1、根据菌种及生长阶段选择。
微生物种类不同,所具有的酶系及其性质不同,所要求的温度范围也不同。在发酵前期由于菌量少,发酵目的是要尽快达到大量的菌体,取稍高的温度,促使菌的呼吸与代谢,使菌生长迅速;在中期菌量已达到合成产物的最适量,发酵需要延长中期,从而提高产量,因此中期温度要稍低一些,可以推迟衰老。发酵后期,产物合成能力降低,延长发酵周期没有必要,就又提高温度,刺激产物合成到放罐。
2、根据培养条件选择。
温度选择还要根据培养条件综合考虑,灵活选择。
通气条件差时可适当降低温度,使菌呼吸速率降低些,溶氧浓度也可髙些。
培养基稀薄时,温度也该低些。因为温度高营养利用快,会使菌过早自溶。
3、根据菌生长情况
菌生长快,维持在较高温度时间要短些;菌生长慢,维持较高温度时间可长些。培养条件适宜,如营养丰富,通气能满足,那么前期温度可髙些,以利于菌的生长。总的来说,温度的选择根据菌种生长阶段及培养条件综合考虑。要通过反复实践来定出最适温度。
9、不同时间染菌对发酵有什么影响,染菌如何控制?
答:(1)种子培养期染菌:由于接种量较小,生产菌生长一开始不占优势,而且培养液中几乎没有抗生素(产物)或只有很少抗生素(产物)。因而它防御杂菌能力低,容易污染杂菌。如在此阶段染菌,应将培养液全部废弃。
(2)发酵前期染菌:发酵前期最易染菌,且危害最大。
原因 发酵前期菌量不很多,与杂菌没有竞争优势;且还未合成产物(抗生素)或产生很少,抵御杂菌能力弱。
在这个时期要特别警惕以制止染菌的发生。
染菌措施 可以用降低培养温度,调整补料量,用酸碱调pH值,缩短培养周期等措施予以补救。如果前期染菌,且培养基养料消耗不多,可以重新灭菌,补加一些营养,重新接种再用。
(3)发酵中期染菌 :发酵中期染菌会严重干扰产生菌的代谢。杂菌大量产酸,培养液pH下降;糖、氮消耗快,发酵液发粘,菌丝自溶,产物分泌减少或停止,有时甚至会使已产生的产物分解。有时也会使发酵液发臭,产生大量泡沫。
措施 降温培养,减少补料,密切注意代谢变化情况。如果发酵单位到达一定水平可以提前放罐,或者抗生素生产中可以将高单位的发酵液输送一部分到染菌罐,抑制杂菌。
(4) 发酵后期染菌:发酵后期发酵液内已积累大量的产物,特别是抗生素,对杂菌有一定的抑制或杀灭能力。因此如果染菌不多,对生产影响不大。如果染菌严重,又破坏性较大,可以提前放罐。
发酵染菌后的措施:
染菌后的培养基必须灭菌后才可放下水道。灭菌方法:可通蒸汽灭菌,也可加入过氧乙酸等化学灭菌剂搅拌半小时,才放下水道。否则由于各罐的管道相通,会造成其它罐的染菌,而且直接放下水道也会造成空气的污染而导致其它罐批染菌。
凡染菌的罐要找染菌的原因,对症下药,该罐也要彻底清洗,进行空罐消毒,才可进罐。
染菌厉害时,车间环境要用石灰消毒,空气用甲醛熏蒸。特别,若染噬菌体,空气必须用甲醛蒸汽消毒
10、发酵级数确定的依据是什么?
答:
一般由菌丝体培养开始计算发酵级数,但有时,工厂从第一级种子罐开始计算发酵级数
谷氨酸:三级发酵
一级种子(摇瓶)→二级种子 (小罐)→发酵
青霉素:三级发酵
一级种子 (小罐)→二级种子(中罐)→发酵
1、发酵级数确定的依据:级数受发酵规模、菌体生长特性、接种量的影响。
2、级数大,难控制、易染菌、易变异,管理困难,一
般2-4级。
3、 在发酵产品的放大中,反应级数的确定是非常重要
的一个方面
11、发挥菌种的最大生产潜力主要考虑那几点?
12、什么是半连续培养,说明其优缺点。
答:在补料分批培养的基础上间歇放掉部分发酵液(带放)称为半连续培养。某些品种采取这种方式,如四环素发酵
优点 放掉部分发酵液,再补入部分料液,使代谢有害物得以稀释有利于产物合成,提高了总产量。
缺点 代谢产生的前体物被稀释,提取的总体积增大
13、发酵工程主题微生物有什么特点?
答:发酵工程所利用的微生物主要是细菌、放线菌,酵母菌和霉菌
特点:(1)对周围环境的温度、压强、渗透压、酸碱度等条件有极大的适应能力
(2)有极强的消化能力
(3)有极强的繁殖能力
14、什么叫染菌,对发酵有什么影响,对提炼有什么危害?
答:染菌:发酵过程中除了生产菌以外,还有其它菌生长繁殖
染菌的影响:发酵过程污染杂菌,会严重的影响生产,是发酵工业的致命伤。
造成大量原材料的浪费,在经济上造成巨大损失
扰乱生产秩序,破坏生产计划。
遇到连续染菌,特别在找不到染菌原因往往会影响人们的情绪和生产积极性。
影响产品外观及内在质量
发酵染菌对提炼的影响:染菌发酵液中含有比正常发酵液更多的水溶性蛋白和其它杂质。
采用有机溶剂萃取的提炼工艺,则极易发生乳化,很难使水相和溶剂相分离,影响进一步提纯。
采用直接用离子交换树脂的提取工艺,如链霉素、庆大霉素,染菌后大量杂菌黏附在离子交换树脂表面,或被离子交换树脂吸附,大大降低离子交换树脂的交换容量,而且有的杂菌很难用水冲洗干净,洗脱时与产物一起进入洗脱液,影响进一步提纯
15、结合所学《微生物发酵工程》课程论述某个工业发酵产品的生产工艺流程(可画图说明),越详细越好。
答:①培养基制备
②、无菌空气制备
③、菌种与种子扩大培养
④、发酵培养
⑤、通过化学工程技术分离、提取、精制。
发酵考试内容 资料整理
1、生物材料:包括来自自然界的微生物,基因重组微生物,各种来源的动植物细胞,因此,发酵工程是生物工程的主要基础和支柱。
2、初级代谢产物:是指微生物产生的,生长和繁殖所必须的物质。如蛋白质,核酸等。
3、次级代谢产物:是指微生物产生的,与微生物生长和繁殖无关的一类物质。其生物合成至少有一部分是和与初级代谢产物无关的遗传物质有关,同时也与这类遗传信息产生的酶所控制的代谢途径有关。
4、代谢控制发酵技术:是指应用动态生物化学的知识和遗传学的理论选育微生物突变株,从DNA分子水平上,控制微生物的代谢途径,进行最合理的代谢,积累大量有用发酵产物的技术。
5、发酵工程技术的发展趋势:①利用基因工程等先进技术,人工选育和改良菌种,实现发酵产品产量和质量的提升;②采用发酵技术进行高等动植物细胞培养,具有诱人的的前景;③随着酶工程的发展,固定化技术被广泛应用;④不断开发和采用大型节能高效的发酵装置,计算机自动控制将成为发酵生产控制的主要手段;⑤发酵法生产单细胞蛋白,将是产量最大、最具广阔前景的产业,寄希望于解决人类未来粮食问题;⑥应用代谢控制技术,发酵生产氨基酸、核苷酸;⑦将生物技术更广泛的用于环境工程。
6、转化:是指质粒DNA或以它为载体构建的重组DNA导入细菌的过程。
7、转导:是指通过病毒将一个宿主的DNA转移到另一个宿主细胞中,而引起的基因重组现象。如果共组DNA与受体DNA发生重组则称此转导过程为流产转导。获得新遗传性状的受体细胞,称转导子。
8、工业微生物:是指在发酵工业上已经应用的或具有潜在应用价值的微生物,其范围随科学技术的发展而不断扩展。
9、酵母菌:是指单细胞真核生物常以出芽方式进行无性繁殖,多为腐生。根据产生孢子的能力,可将酵母分为三类:a形成子囊孢子的株系属于子囊菌门;b形成担孢子的株系属于担子菌门;c不形成孢子只通过芽子的假酵母属半株菌。
10、恒化式富集培养:通过改变限制性机制的浓度可以控制两类不同菌株的比生产速率。可以通过控制机制浓度在某一范围内使目的菌生长占优势。又根据微生物对环境因子的耐受范围具有可塑性的特点,通过连续改变限制性机制的浓度富集培养所需要的菌种。
11、夹层培养法:先在培养皿底部倒一层不含菌的培养基,待凝,添加一层混有经诱变剂处理菌液的基本培养基,其上再加一薄层不含菌的基本培养菌,经培养后对首次出现的菌落用记号笔一一标在皿底,然后再加一层完全培养基,培养后新出现的小菌落多数都是营养缺陷性突变株。
12、营养缺陷型定义:某些菌株发生突变后,失去合成某种对该菌株必不可少的物质的能力,必需从外界环境获得该物质才能生长繁殖,这是突变型菌株称为营养缺陷型。意义:在营养缺陷型突变菌株中,生物合成途径中的某一步发生了酶缺陷,合成反应不能完成,末端产物不能积累,因此末端产物的反馈调节作用被解除。只要在培养基中限量加入所需要的末端产物,克服生长障碍,就能使中间产物积累。
13、出发菌株的选择:可选择已经过诱变剂处理的菌株,因为这样的菌株对诱变剂的敏感性会有所提高。
14、诱变剂的剂量选择:诱变剂的剂量与致死率有关,而致死率又与突变率有一定的关系,因此可用致死率作为诱变剂剂量选择依据。一般突变率随诱变剂剂量的增加而提高,但达到一定程度以后,再提高剂量反使突变率下降。
15、抗生素法:有青霉素法和制霉菌素法等素种。青霉素法适用于细菌,青霉素的抑制细菌细胞壁的生物合成,杀死正在繁殖的野生型细菌,但无法杀死正处于休止状态的营养缺陷型细菌。制霉菌素法则适用于真菌,制霉菌素可与真菌细胞膜上的甾醇作用,从而引起膜的损伤,也是只能杀死生长繁殖着的酵母菌或霉菌。在基本培养基中加入抗生素,野生型生长被杀死,营养缺陷型不能再基本培养基中生长而被保留下来得以浓缩。
16、组成型突变株定义:如果调节基因发生突变以致产生无效的阻遏物而不能和操纵基因结合;或操纵基因突变,不能和阻碍物结合从而造成结构基因不受控制的转录,酶的生长将不再需要诱导剂或不再被末端产物分解代谢物阻遏,这样的突变株称为组成型突变株。
17、条件抗性突变的定义:条件致死突变菌指菌株突变后在特定条件下能生长,而在原来条件下不能生长而被致死的突变。如适宜在中温条件下生长的细菌,经过诱变后获得的温度敏感突变株只能在低于37度条件下生成。
18、溶源性转化:当温和噬菌体感染宿主而使其发生溶源化石因噬菌体的基因整合到宿主的核基因组上,而使后者获得了除免疫性以外的新性状的现象称为溶源性转化。
19、接合:结合是原核微生物的有性繁殖方式。结合的两菌株分属不同的交配型,遗传信息总是从供体转移到受体。当两种不同的交配型的菌株相互识别和结合以后,雄性细胞的致育因子,通过细胞的表面结构传递到雌性细胞,这种致育因子后来称为F因子。结合定义的关键是细胞间的直接接触。细菌在结合的时候,两个细胞直接接触处形成接合管,单链DNA可以直接通过这个通道转移。通常情况下接合转移的是带有接必须基因的质粒,但是少数情况下这种质粒整合到细菌染色体,就可能发生染色体转移,单链转移完毕,供体和受体细胞分别合成互补链,完成接合。
20、准性生殖:是指不同菌株的普通体细胞互相融合后,不经过减数分裂就能导致基因重组的生殖过程。其过程包括菌丝连接,形成异核体,核融合,有丝分裂交换和单倍体化几个阶段。准性生殖的特点:重组体细胞和一般体细胞没有什么不同,不产生在特殊的囊器中;无减数分裂,不产生有性孢子;染色体的交换和减少是不规则的,而且是不协调的,其基因重组是通过细胞的有丝分裂实现的。
21、原生质体融合法的优越性:
a、受接合型和致育型的限制小,两亲株没有供体和受体之分,有利于不同种属微生物的杂交。b、重组频率高于其他杂交方法。c、遗传物质的传递更加充分、完善,既有核配又有质配。d、可以用温度、药物、紫外线等处理纯化的一方或双方,然后使其融合,筛选再生重组子菌落,提高筛选效率。e、用微生物的原生质体进行诱变,可明显提高诱变频率。
22、载体应具备的特点:a、载体本身是一个单独的复制子,在共价连接了外源DNA后仍能自我复制。b、对某些限制酶只有一个切口,并在酶作用后不影响其自主繁殖能力。c、从细菌核酸中分离纯化很容易。d、在宿主中能以多拷贝的形式存在,有利于插入的外源基因的表达,能在宿主中稳定的遗传。砂土管保藏法:选取过40目筛的黄砂,酸洗,再水洗至中性,烘干备用;过120目筛子的黄土备用;按一份土加4份砂的比例均匀混合后,装入小试管,装量1厘米左右。121摄氏度蒸汽灭菌1~1.5h,间歇灭菌3次。50摄氏度烘干后经检查无误后备用。将待保藏的菌株制成菌悬液或孢子悬液,取0.1ml滴入砂土管中,放线菌和霉菌也可直接刮下孢子与载体混匀,而后真空干燥约2~4h,用火焰熔封管口,置于干燥器中,在室温或4摄氏度冰箱内保藏。
23、微孔接种法:利用注射器在罐的接种口橡皮膜上注入罐内进行接种。
24、一级种子罐扩大培养:也称二级发酵;二级种子罐扩大培养:也称三级发酵。
25、双种法:用两只种子罐接种一只发酵罐的接种方法。
26、倒种法:从一只发酵罐中倒出适宜的,适量的发酵液给另一发酵罐做种子的方法。
27、培养基:种子罐是培养菌体的,培养基的糖分要少,对微生物生长起主导作用的氮源要多。
28、培养湿度:一般相对湿度在40%~45%时孢子数量最多。
29、培养基pH变化与碳氮比直接有关,比值高于某一值培养基倾向于向酸性转移,低于那一值倾向于向碱性转移。
30、泡沫危害:a、影响微生物对氧的吸收;b、妨碍二氧化碳的排除;c、降低装料系数,影响设备利用率;d、发生跑料,招致染菌。
31、①菌丝结团:危害:影响菌的呼吸和对营养物质的吸收。原因:搅拌效果差,接种量小。②菌丝粘壁:原因:搅拌效果不好,泡沫过多,种子装料系数过小。危害:培养液菌丝浓度减少,可能形成菌丝团。
32、氮源:通常无机氮源和有机氮源联合使用,既保证了营养丰富也保证了可被菌体迅速吸收使用。
33、无机盐类的主要功能:①提供合成细胞结构物质所需元素;②作为酶的组成部分或维持酶的活性;③调节渗透压、PH、氧化还原电位等。
34、生长因子:生长因子是一类对微生物正常代谢必不可少且不能用简单的氮源或氮源自行合成的,需要量一般很少的有机物。狭义的生长因子一般仅指维生素。。广义的生长因子除了维生素外,还包括碱基、卟啉及其衍生物、甾醇、胺类、C4-C6的分枝或直链脂肪酸、以及需要量较大的氨基酸。
35、培养基:根据原料分为天然、合成和半合成培养基。天然培养基的优点是取材方便,营养丰富,种类多样,配置方便,成本低廉;缺点:成分不稳定。常用的有牛肉浸膏、蛋白胨、酵母浸膏、豆芽汁、玉米浆、麸皮水解液、牛奶、血清、胡萝卜汁、椰子汁等。合成培养基的优点是成分精确,重演性高;缺点:价格较贵,配置繁琐。
36、种子培养基要求:营养相对丰富、完全,并要考虑能够维持稳定的PH,尤其是氮源的含量应该较高即C/N比值低。
37、发酵培养基的氮源:多为淀粉、淀粉水解酶、糖蜜、有机酸、低碳醇、脂质、烃类等。
38、有机氮源:黄豆饼粉、花生饼粉、棉子饼粉、玉米浆、蛋白胨、酵母粉、鱼粉、蚕蛹粉、发酵菌丝体和酒精等。
39、无机氮源:氨水、氨液、尿素、硝酸盐和铵盐等。
40、前体:有些化合物被加入培养基后,能够直接在生物合成过程中结合到产物分子中去,而自身的结构并未发生太大变化,却能提高产物的产量,这类小分子物质被称为前体。
前体物质有的是菌体本身能够合成的,如合成青霉素分子所需的缬氨酸和半胱氨酸,合成链霉素的肌醇等。有的是菌体不能合成或合成的很少,需从外界加入的。如合成青霉素V的苯氧乙酸等,因此这些物质就必须是培养基的成分之一。前体的使用浓度要适当,因为许多前体物质浓度大对菌体有毒副作用,一般采用流加的方式,减少一次加入量。
41、磷酸盐的作用:①提供某些蛋白质、核酸、ADP、ATP所需磷元素;②缓冲作用。
42、复合反应是可逆的,影响复合反应的条件有:①葡萄糖浓度;②淀粉乳浓度(生产中一般采用10~12°Be18~21% 这时糖化液纯度90~92%,复合糖7%左右)③酸度和酸的种类。
43、无机酸的选择和用量:目前国内普遍采用催化效能最高的盐酸进行淀粉水解。
44、活性碳吸附法:①温度一般控制在65摄氏度;②pH控制在5.0以下;③时间25~30分钟为好;④活性碳用量控制在淀粉量的0.6%~0.8%。
45、α-淀粉酶、液化酶、糊精化酶:是内切型淀粉酶,从淀粉分子在内部任意切开α-1,4糖苷键,不能水解α-1,6糖苷键。水解速度受底物分子大小和结构的影响,分子越小越难水解,分枝越多越难水解,离α-1,6糖苷键越近的键越难水解。
46、淀粉葡萄糖苷酶、糖化型淀粉酶、糖化酶:是外切型淀粉酶,从底物非还原性末端依次水解α-1,4糖苷键,也能水解α-1,6糖苷键,但较慢,速度仅是前者的十分之一。水解速度也受底物分子大小的影响,水解聚合度10~20的糊精时速度最快,水解淀粉和低聚糖速度较慢。水解能力随不同微生物来源而异。
47、糊化过程分为三个阶段:预糊化、糊化、溶解。
48、淀粉老化的影响因素:①直链淀粉易老化,支链淀粉不易老化;②DE值越小越易老化;③碱性条件可以抑制淀粉老化;④高温条件下不易老化,2~4℃极易老化;⑤快速升温或快速降温不易老化;⑥淀粉糊浓度过高易发生老化。
49、检验液化终点的方法是:将碘溶液滴入液化液中,如显棕红色或橙黄色则达到液化终点。
50、淀粉糖化的温度和pH:根据酶的特性,尽量选用较高的温度和较低的pH糖化。
51、辐射灭菌法常用的射线:紫外线、X射线和γ射线、高速电子流的阴极射线。
52、化学药剂灭菌法常用化学药剂:高锰酸钾溶液、漂白粉、过氧乙酸、新洁尔灭和杜灭芬、甲醛、戊二醛、酚类、焦炭酸二乙脂、抗生素、环氧乙烷。
53、过滤除菌是用0.01~0.45μm孔径滤膜对压缩空气、酶溶液、啤酒及其他不耐热化合物溶液除菌。
54、空气过滤除菌的原理:布朗扩散截留作用、惯性截留作用、拦截截留作用、重力沉降作用、静电吸引作用。
55、空气过滤除菌的介质:棉花(有弹性,纤维长度适中,通常使用脱脂棉);玻璃纤维(纤维直径小,不易折断,过滤效果好);活性碳(过滤效率比棉花低,但阻力小,吸附力强,通常与棉花介质一起使用)。
56、空气预处理的目的:提高压缩前空气的洁净度;去除压缩后空气中所带的油和水。
57、两级冷却、加热除菌流程的特点是:两次冷却、两次分离、适当加热。
58、旋风分离器总的要求是:①旋风分离器的直径不要太大,因为气流旋转运动所产生离心力与分离器半径成反比,若半径大,分离效率就低。要分离的空气量大时,可采用多个分离器并联。②进口的气流速度要适当。旋转气流所产生的离心力与气流速度的平方成正比,故气流速度小,分离效果差;但气流速度过大,则能量损失多(压降大),同时也会产生涡流而降低效率。一般采用进口气流速度15~25/s,排气出口气流速度为4m/s。
59、丝网分离器:体积小,丝网表面间隙小,可除去小至5μm的雾状微粒,分离效率达98%~99%,且阻力损失不大。但对于雾沫浓度很大的场合,会因雾沫堵塞孔隙而增大阻力损失。
60、溶液性质对氧溶解度的影响:温度(氧在水中的溶解度随温度的升高而降低);酸的种类和浓度(一般浓度升高,溶解度降低);盐浓度(在电解质溶液中,由于发生盐析作用,使氧的溶解度降低)。
61、搅拌促进氧的传递方式:①增加氧与液体接触面积;②延长气泡停留时间;③利于养的吸收;④减小传递阻力。
62、空气线速度较小时:氧传递系数Kla是随通风量的增大而增大的,当增加通风量时,空气的线速度也就相应增大,从而增加了溶氧,氧传递系数Kla相应的也增大。
63、空气分布管:当通风量超过一定值后,气泡的直径与通风量有关,与喷口的直径无关。
64、表面活性剂:培养液中消泡用的油脂等具有亲水端和疏水端的表面活性物质分布在气液界面,增大了传递的阻力,使传氧系数Kla等发生变化。
65、离子强度:发酵液中含有多种盐类,离子强度约为0.2~0.5mol/L。Kla随着离子强度的增大而增大。搅拌和通气消耗的功率越大,则Kla随离子强度增大的幅度越大,有时Kla可高达纯水中的5~6倍。在盐溶液中,气泡细胞且难以聚合成大气泡。而且气体滞留量有增大的趋势。
66、改变搅拌速度:①当转速n较低时,增大n对K有明显作用;②当转速n很高时,K值趋向于零(K:调节对象放大倍数,定义为每变化单位转读所引起的溶解氧浓度的变化)。
67、巴斯德效应:在好氧条件下,酵母发酵能力降低,这个事实很早就被巴斯德发现,称为巴斯德效应。
68、组成酶:是菌体生长繁殖所必需的酶系,它的产生一般不受培养基成分的影响。
69、间接相互作用:是指两种可以单独生活的微生物共同生活在一起时,可以互相有利或彼此依赖,创造相互有利的营养和生活条件,微生物间的互生和共生关系属于此类型。
70、直接相互作用:是指微生物间互不相容性,即一种微生物的生长繁殖,致使另一类微生物趋于死亡的过程,微生物学中的捕食、寄生及竞争等属于此类。嗜杀性酵母的生长也属于此类。
71、生物反应器设计的主要目标:获取高质量、低成本的产品。
72、露天式锥底发酵罐:罐锥底部分最好能冷却,锥底罐的优点是发酵速度快,易于沉淀收集和保存酵母。可单独用于前发酵和后发酵,也可合并前后一起发酵,锥底罐是密闭罐,既可作发酵罐也可作蓄酒罐,回收二氧化碳。
73、联合罐的罐中心:设有二氧化碳注射圈,高度恰好在酵母层之上,二氧化碳在罐中央向上注入时,引起啤酒运动,使酵母浓聚于底部出口处,同时啤酒中的不良挥发成分被注入的二氧化碳带着逸出。
74、朝日罐的特点:利用离心机回收酵母,利用薄板换热器控制发酵温度,利用循环泵把发酵液抽出又送回去。
75、挡板的作用:①防止液面中央产生漩涡;②促使液体激烈翻动,增加溶解氧;③改变液流的方向,由径向流改为轴向流。
76、全挡板条件:是指在发酵罐内再增加挡板或其他附件时,搅拌功率保持不变,而漩涡基本消失。
77、消泡装置中安装在罐内的是:耙式消泡器;安装在罐外的是:半封闭式涡轮消泡器、离心式消泡器、碟片式离心消泡器、刮板式消泡器等。
78、气升式发酵罐的特点:①反应溶液分布均匀;②较高的溶氧速率和溶氧效率;③剪切力小,对生物细胞损伤小;④能耗低;⑤传热良好;⑥结构简单,易于加工制造,造作和维修方便。
79、经验放大法包括:几何相似放大、以单位体积液体中搅拌功率相同放大(不通气发酵罐)、以单位体积培养液的通气搅拌功率相等的原则放大(通气发酵)、空气量放大、按搅拌器末端线速度相等放大。
80、生物反应器的放大标准:首先要从大量试验材料中找出影响生产的主要矛盾,在着重解决主要矛盾的同时,不要是次要矛盾激化,比如单纯的按Kla相等的准则放大的生物反应器,液体的剪切力肯能会上升到剪切敏感系统不可接受的程度,这样投入生产就可使生产失败。所以,必需注意不使这类情况出现,为此,往往或多或少牺牲几何相似原则。
81、发酵热:发酵过程中产生的热量,包括生物热、搅拌热、蒸发热和辐射热等。
82、消泡剂必需具有的特点:①消泡剂必须是表面活性剂,且具有较低的表面张力,消泡作用迅速,效率高;②消泡剂在气-液界面有足够大的散布系数,才能迅速发挥其消泡活性,这就要求消泡剂有一定的亲水性;③消泡剂在水中的溶解度较小,以保持其持久的消泡或抑泡性能,并防止形成新的泡沫;④对微生物的发酵过程无毒,对人、畜无害,不被微生物同化,对菌体的生长和代谢无影响,对产物提取和产品质量无影响;⑤不干扰溶解氧、pH等测定仪使用,不影响氧的传递;⑥消泡剂来源方便,价格便宜,不会在使用和运输中引起任何危害;⑦能耐受高温灭菌。
83、下游技术:是指使生物界自然产生的或通过微生物菌体发酵的、动植物细胞组织培养的、酶反应等各种生物工业生产过程获得的生物原料,经提取分离,加工精制称为目的成分,最终使其成为产品的技术。
范畴:物质分离和产品加工。
84、发酵液预处理的目的:①改变发酵液的物理性质,提高固液分离的效率;②尽可能使产物转入便于后处理的某一相中;③出去发酵液中部分杂质,以利于后续各步操作。
85、凝聚值:使胶粒发生凝聚作用的最小点解质浓度称为凝聚值。
86、絮凝剂:是一种能溶于水的高分子聚合物。对絮凝剂的化学结构一般有以下要求:①其分子必须含有相当多的活性官能团;②必须具备长链的线性结构;③分子质量不能超过一定限度。
87、助滤剂的使用方法:①在过滤介质表面预涂助滤剂;②直接加入发酵液。也可两种方法兼用。
88、钙离子的去除用草酸;镁离子的去除用三聚磷酸钠;亚铁离子用黄血盐,使其形成普鲁士蓝沉淀而去除。
89、碟片的作用:缩短固体颗粒的沉降距离;扩大转鼓的沉降面积。
90、封头过滤:是指料液的流动方向与滤饼基本垂直。
切向流过滤:又称错流过滤、交叉过滤、十字过滤等。
91、不宜采用高压匀浆法破碎的微生物细胞有:易造成堵塞的团状或丝状真菌,较小的革兰氏阳性菌,以及含有包含体的基因工程菌,因为包含体制地坚硬,易损伤匀浆阀。
92、自溶法:是一种特殊的酶溶方式。例如,对谷氨酸生产菌,可加入0.028mol/L碳酸钠和0.018mol/L碳酸氢钠,配成pH10的缓冲液,再配3%的细胞悬浮液,加热至70%,保温搅拌20min,菌体即自溶。
93、等电点沉淀的操作条件是:低离子强度;pH≈pI。因此,等电点沉淀操作需要在低离子强度下调整溶液pH至等电点,活在等电点的pH下利用透析等方法降低离子强度,使蛋白质沉淀。
94、在选择盐析的无机盐时,对盐的要求:①溶解度大,能配制高离子强度的盐溶液;②溶解度受温度影响较小;③盐溶液密度不高,以便蛋白质沉淀的沉降或离心分离;④较高的盐析技能。
95、有机溶剂沉淀法的优点:是分辨能力比盐析法高,即一种蛋白质或其他溶质只在一个比较窄的范围内沉淀;缺点是需要耗用大量的溶剂,溶剂的来源、贮存都比较困难或麻烦,并且提炼操作需在低温下进行,使用上有一定的局限性,收率也比盐析法低。
96、活性炭:疏水性,最常用的吸附剂。
97、电渗析:是膜分离技术的一种,它是在直流电场的作用下,一电位差为推动力,利用离子交换膜的选择渗透性,把电解质从溶液中分离出来,从而实现溶液的淡化、浓缩、精制或纯化的目的。
98、浸取:用某种溶剂把有用物质从固体原料中提取到溶液中的过程称为浸取,也称浸出。
99、反胶团:若将表面活性剂溶于非极性的有机溶剂中,并使其浓度超过临界胶团浓度时,便会在有机溶剂内形成聚集体,这种胶团称为反胶团。
100、超滤:凡是能截留相对分子质量在500以上高分子的膜分离过程叫超滤。
101、蒸发:按照对所产生的二次蒸汽是否利用分为单效蒸发和多效蒸发。
102、结晶:是溶质呈晶态从液相或气相等均相中析出的过程。
103、晶体的自范性:晶体具有自发的生长为多面体结构的可能性,即晶体常以平面作为与周围介质的分界面,这种性质称为晶体的自范性。
104、二次成核:受已存在的宏观晶体的影响而形成晶核的现象,称之为二次成核。
105、冷冻干燥:亦称为升华干燥,它是将湿物料在较低温度下(-10~-50℃)冻结成固态,然后将其放置于高度真空下,料内水分不经液态直接升华成气态,物料脱水为成品。在所有干燥法中,是对产品破换程度最低的。
106、固定化酶:是指在一定空间内呈闭锁状态存在的酶,能连续地进行反应,反应后的酶可以回收重复利用。其活性在多数情况下比天然酶小。
107、酶反应的最适温度是酶热稳定性与反应速率的综合结果。由于固定化后,酶的热稳定性提高,所以最适温度也随之提高,这是很有利的。
108、共固定化技术:是将酶、细胞器和细胞同时固定于同一载体中,形成固定化细胞系统。
109、生物柴油:指由动植物油脂与短链醇(甲醇或乙醇)进行酯交换反应所制备的脂肪酸单酯。
110、清洁生产:是指将综合预防的环境策略持续的用于与生产过程和产品中以便减少对人类和环境的风险性。概括的说就是:低消耗、低污染、高产出,是实现经济效益、社会效益与环境效益相同一的21世纪工业化生产的基本模式。
用于大量培养一种严格厌氧细菌,所使用的厌氧发酵罐,其制造厌氧环境的原理理是什么?谢谢!
厌氧发酵的理论现在主要有两种:两阶段理论和三阶段理论
两阶段理论:第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO2和H2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH等)强。
第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);产甲烷细菌的主要特点是:1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。
三阶段理论:第一阶段,水解和发酵。在这一阶段中复杂有机物在微生物(发酵菌)作用下进行水解和发酵。多糖先水解为单糖,再通过酵解途径进一步发酵成乙醇和脂肪酸等。蛋白质则先水解为氨基酸,再经脱氨基作用产生脂肪酸和氨。脂类转化为脂肪酸和甘油,再转化为脂肪酸和醇类。
第二阶段,产氢、产乙酸(即酸化阶段)。在产氢产乙酸菌的作用下,把除甲酸、乙酸、甲胺、甲醇以外的第一阶段产生的中间产物,如脂肪酸(丙酸、丁酸)和醇类(乙醇)等水溶性小分子转化为乙酸、H2和CO2。
第三阶段,产甲烷阶段。甲烷菌把甲酸、乙酸、甲胺、甲醇和(H2+CO2)等基质通过不同的路径转化为甲烷,其中最主要的基质为乙酸和(H2+CO2)。厌氧消化过程约有70%甲烷来自乙酸的分解,少量来源于H2和CO2的合成。
为什么在培养基中培养乳酸菌,乳酸菌活菌数会先升高再降低
在微生态制剂的发酵生产中,活菌数的含量直接影响到产品的质量,而发酵过程中和活菌数除了菌株及发酵的条件外,培养基的组成是一个重要方面。它提供微生物生长繁殖所必须的营养物质,是菌体繁殖的物质基础。另外,原材料成本占发酵成本30~50%,因此,要选择营养物质的组成比较丰富,成本低廉的原材料,才能提高基质转化率,降低生产成本。
本试验利用正交设计对多种原材料及其浓度进行筛选,从中筛选出适合乳酸菌生长的三组培养基配方,活菌数3#为70亿/ml、6#为67亿/ml、13#为66亿/ml。在此基础上,综合考虑选择了3#培养基在生产中放大培养,其发酵菌数达到100亿/ml以上,基质转化率35%,为工业化生产奠定了基础。
1材料与方法
1.1 材料
1.1.1菌种:鸡源乳酸菌(本研究所分离、鉴定保存)
1.1.2原材料及试剂:酵母粉、葡萄糖、玉米糖浆、微量盐及其他特殊成分;MRS液体培养基,琼脂粉,5NNaOH溶液
1.1.3仪器及设备:三角烧瓶、二重皿、全温振荡培养箱、高压消毒锅、微量移液器、全自动发酵罐等。
1.2方法
1.2.1种子液准备:
取出菌种保藏管用MRS固体培养基划平板进行复苏,37度厌氧培养48h。在平皿上挑取单个菌落接种50mlMRS液体培养基中,在摇床中37度厌氧培养48h。染色、镜检种子液,观察菌体生长情况及有无杂菌生长。
1.2.2正交试验培养基配制;
根据细菌组成的碳氮比来确定原材料的浓度配比,选择5种原材料,确定4个浓度,采用正交表L16(45)共安排16次试验,每个试验配培养基各100ml,调整pH值置150ml三角瓶中消毒,备用。
1.2.3接种与培养:
正交试验种子采用2%接种量,接种后置三角瓶与37度震荡培养。每8h调一次pH值,培养36h用梯度稀释和平板涂布法检测活菌数。
1.2.4发酵中试:
根据正交试验结果,确定配方,采用150升种子罐和1.5吨发酵罐进行中试,培养温度37度,转速120-150转/min,培养时间36-48h,用梯度稀释和平板涂法检测活菌数。
2 结果
2.1通过正交试验,培养36h用梯度稀释和平板涂布法检测活菌数,获得活菌数为70亿/ml、67亿/ml、和66亿/ml的配方。
2.2用3#配方作为大规模中试发酵培养基在全自动发酵罐不中厌氧培养36h,结果活菌数为100~120亿/ml
3 讨论
3.1 本试验采用了正交试验设计法对培养基的原材料进行筛选,该方法能利用有限的试 验获得正确、全面的试验结果,加快了实验进程。
3.2通过正交试验和发酵中试,活菌数超过了实验室培养的菌数,使基质转化率达到35%,降低了生产成本
国内发酵罐重点品牌有哪些?国外呢?
国内发酵罐前几年是:上海的国强,高机,保兴.....等,其它的品牌并不值得考虑,镇江东方,日泰等也能生产,但产品的内涵一直不高,做不了好产品,企业的文化就如此,在控制上还要原始的重启操作.
近年来市场的洗牌,上海的国强吃老本,祖师爷不行了,保兴不思进取,产品越来越差,五金配件,产品外观实在掉上海人的脸面,软件方面吃老本还行,高机只要大不要小,弄伤元气,有时会弄出让你看不懂的产品来,这是高机的?软件水平一般,新近冒出一个广世生物,很低调,有幸同时使用过,觉得很有建议,开始小看了新的产物,非比寻常,外观中规中矩,五金配件能和纯进口产品有的一搏,细节上再注意点,更加的漂亮,软件上更不简单,用过4-5家的产品,且有过人之处,本人认为好产品贵在坚持,不要走老师们的老路,提高自己的管理水平,名牌货要做出来的,不是吹牛皮出来的..............
请问一下,国产的十 大品牌有知道的吗?
1、立邦漆 (中国驰名商标、消费放心产品、涂料十大品牌)
2、多乐士乳胶漆 (世界品牌、CCEL中国环境标志认证、涂料十大品牌)
3、华润涂料 (中国驰名商标、中国名牌产品、国家高新技术企业、涂料十大品牌)
4、3A环保漆 (中国驰名商标、涂料行业十大质量品牌、涂料十大品牌)
5、美涂士涂料 (中国驰名商标、中国化工百强企业、中国建筑涂料十大品牌)
6、粤马涂料(中国驰名商标、中国名牌、中国环境标志、3C认证,广东五强涂料品牌)
7、紫荆花漆 (中国名牌、CCC及FDA认证产品、涂料十大品牌)
8、嘉宝莉漆 ( CCEL中国环境标志认证、中国名牌、涂料十大品牌)
9、长颈鹿漆 (中华制漆旗下品牌、中国名牌、广东名牌、中国消费者信赖的知名品牌)
10、大宝漆 (CCEL中国环境标志认证、广东省著名商标、广东名牌、涂料十大品牌)