桥梁同步顶升

时间:2024-03-09 05:09:04编辑:奇闻君

桥梁顶升是 什么意思

桥梁顶升技术采用整体液压同步升高方案,也就是利用原有灌注桩承重,不破坏原桥面铺装层、栏杆扶手、人行道、梁板间的连接等,先用“液升”装置整体顶住桥梁上部结构,然后截断各墩、台帽梁下的立柱,再进行操作“液升”装置,使该桥整体升高到设计高度,最后接长立柱钢筋立模浇灌二期砼。-------------------------------------------------------------------------------实例:杭州九堡大桥的建设理念与技术创新(图)《中国公路》  傅翼 俞菊虎  杭州九堡大桥采用了新型组合结构桥梁型式,创新了顶推施工工法,体现了全寿命经济性理念,作为我国第一座全桥采用组合结构的越江桥梁,旨在通过建设理念与技术创新,为推动我国组合结构桥梁的发展做出贡献。  工程概况  杭州九堡大桥(即钱江八桥)是钱塘江(杭州段)规划建设的十座大桥之一,位于彭埠大桥(即钱江二桥)下游5公里,下沙大桥(即钱江六桥)上游8公里处,全长1855米,是杭州新一轮城市总体规划“两绕三纵五横”城市快速路网系统中东边一纵的主要组成部分。  九堡大桥道路等级为城市快速路,设置双向六车道,设计行车速度80公里/小时,设计汽车荷载为城-A级。标准段桥面宽度31.5米,主桥根据结构需要加宽至37.7米,行车道单向净宽11.75米,两侧各设置3米宽慢行道。全桥孔跨布置为:55+2×85米+90(北侧引桥)+3×210米(主航道桥)+90+9×85+55米(南侧引桥)。主航道桥与非航道引桥分别采用大跨度连续组合拱桥与连续组合箱梁桥,是国内第一座全桥采用组合结构的大型越江桥梁。项目概算投资为9.7亿元,工程于2009年3月16日正式开工建设,计划于2011年12月30日前完成主体工程竣工验收。  建设理念  钱塘江的自然条件决定了不可能在这里追求桥梁跨度的世界纪录,而着眼于桥梁科技的发展,杭州希望建成一座技术创新并且全寿命经济的大桥。  正因确立了这样的建设目标,在桥型方案选择过程中,设计师们对各个比选方案从结构合理性、施工难易度、工程经济性、环境匹配度以及景观效果等方面进行了综合分析。混凝土结构桥梁具有取材方便、造价低等优点,但存在自重大、工期长、质性脆、抗裂性差等缺点;钢结构桥梁具有自重轻、工期短、塑性与韧性好等优点,但存在造价高、抗火性差、耐腐蚀性差等缺点;而组合结构可以充分利用两种结构优点、弥补各自缺点,实现节约钢材、发挥混凝土性能,降低造价,施工方便,易于养护等特点,使结构具有全寿命经济性。经过综合的对比分析而最终采用了组合结构桥梁方案。  技术特点  主航道桥  基础和下部结构。主桥下部结构采用V形薄壁墩,C50混凝土,V墩顶纵向横梁配预应力平衡水平力,墩身线形顺接梁上拱轴曲线。对应主梁截面V墩分为两个独立V撑,两个独立V撑通过统一的V墩台座与单幅承台相接。主桥各墩承台均为哑铃型截面,C35混凝土,承台顶面标高均为+1.0米。桩基础采用18根2米直径钻孔灌注桩,主桥各墩平均桩长95米。  上部结构。主桥上部结构采用结合梁-钢拱组合体系拱桥,支承跨径组合为188米+22米+188米 +22米+188米,是连续结构(如图2所示)。拱桥主梁为等截面钢-混凝土结合梁结构。钢拱跨径188米,拱肋系统由主拱肋、副拱肋、主副拱肋之间的横向连杆以及拱顶横撑等构件组成。  主拱肋外倾12°,立面矢高43.784米,是主要承重构件。副拱肋轴线为空间曲线,立面矢高33米。主副拱肋之间的横向连杆采用圆钢管,间距8.5米。  组合桥面系全宽37.7米,横向两侧窄箱型主纵梁间距27.6米、梁高4.5米,纵梁之间设有间距4.25米的“工”字型钢横梁。人行道为钢结构,置于主纵梁外侧,其横向加劲肋与“工”字型钢横梁对应设置。桥面板采用C50混凝土、厚26c米,桥面板无预应力束,纵向采用允许桥面板开裂、控制裂缝宽度的原则设计。钢主纵梁内部设系杆索。拱桥吊杆间距8.5米,吊杆上端锚固于主拱肋,下端锚固于钢主纵梁,全桥共设57对吊杆。  施工方案。桥梁下部结构钻孔灌注桩施工采用旋转钻机成孔,主桥桩基利用钻孔平台辅助施工,承台采取钢套箱围堰施工,V型主墩采用劲性骨架配平衡架法分节对称施工。  主桥上部结构施工,按照常规施工方案,需在江上搭设临时墩和支架,进行桥面系与拱肋安装,施工难度大、造价高、对通航影响大,而且质量、安全隐患多。为了优化施工方案,主桥采用了拱梁整体顶推的施工方法,即钢拱与钢梁在岸上先期组拼一体,配合钢梁与拱肋之间的临时杆件共同受力,进行整体顶推。每拼装完成一孔顶推一孔,直至3孔主拱全部顶推到位。然后按照顺序张拉吊杆并拆除临时杆件,铺设预制桥面板并浇注接缝混凝土,完成桥面施工。  主桥顶推施工时,210米跨间仅设置1座临时墩,这在世界上属首次。  非航道引桥  基础和下部结构。引桥下部结构采用单体板式空心墩,承台均采用倒角矩形形式,桩基采用5根1.8米直径钻孔灌注桩,桩长90~95米。  上部结构。引桥以85米为标准跨径,上部结构采用大悬臂的等高度单箱单室钢-混凝土组合结构连续箱梁。主梁结构断面由混凝土桥面板及整体成槽形的钢梁组成。槽形钢梁整体上由顶板、腹板、底板、空腹式横梁、实腹式横梁、腹板加劲肋、底板加劲肋组成。槽形钢梁顶面宽度13.1米,底板宽度11.05米,以4.25米的标准间距设置横隔系,在支承处箱梁内侧由实腹横隔板取代横隔系,在横梁位置设置撑杆及横向连接系统,横向连接系统总宽度31.5米,在空腹式横梁位置设置外侧挑臂撑杆及内部撑杆支撑桥面板系统。  预制桥面板采用C50混凝土,横向由3块变厚度预制板组成,内侧中板变厚范围0.26~0.3米,支点厚0.3米,结构中心线处厚0.26米,外侧边板变厚范围0.22~0.3米。桥面板横向以2道腹板上翼缘为分割点,纵向以4.25米间距的钢横隔系为分割点。组合箱梁的桥面板横向配有体内预应力,纵向采用允许桥面板开裂、控制裂缝宽度的原则设计,桥面板内无纵向预应力。  引桥桥面宽度31.5米,悬臂超过8米,梁中心线高4.5米。整幅梁31.5米的宽度居于同类桥梁前列,更是国内同类桥梁的首次实践。  施工方案。引桥钢结构也采用顶推法施工。两岸均需要在岸侧搭设拼装平台,南北两侧引桥由各自岸侧开始顶推,以一孔梁长为单位逐孔进行,直至一联多跨钢梁全部顶推到位。再按照顺序铺设预制桥面板并浇注接缝混凝土,完成主体结构的施工。预制桥面板的安装采用专用桁车与运梁台车配合进行,专用桁车与运梁台车的轨道设置在对应钢梁腹板处。  引桥顶推施工时,85米跨间不设置临时墩,这在国内尚属首次。  技术创新结构体系。主桥采用跨度3×210米结合梁-钢拱组合体系连续拱桥,桥面系为钢梁与混凝土桥面板组合结构;引桥采用85米标准跨径大悬臂的等高度单箱单室钢-混凝土组合结构连续箱梁桥;是国内第一座全桥采用组合结构的大型越江桥梁。  引桥采用大悬臂的整幅桥面,桥面宽31.5米。整幅梁31.5米的宽度居于同类桥梁前列,更是国内同类桥梁的首次实践。  施工方法。非航道引桥的85米跨连续组合箱梁,在国内首次采用无临时墩顶推施工方案,相关实践经验将具有示范意义与重要参考价值。  主桥设计采用了顶推施工方案,并且210米跨间仅设置1座临时墩,这无疑是一次新的尝试,为拱桥的技术发展提供了有益的经验。  施工装备。主航道拱桥开发了大吨位多点同步顶推设备系统,非航道引桥开发了超长联多点连续顶推施工设备系统。九堡大桥的顶推施工不同于国内常用的推动或拖动梁体在支点上滑移的方法,顶推时不必对主体钢结构进行加强,通过千斤顶的同步平衡控制技术保证结构受力的均匀与可靠,施工方法经济性好。  主航道拱桥研制了超高大型桥梁施工龙门吊,实现了超高、超宽与大吊重情况下的设备投入的经济性、质量可靠性及施工安全性;非航道连续组合箱梁桥研制了大尺度桥面板快速安装与运吊设备,为桥面板实现吊装快捷施工和准确安装定位提供了保证。

解放桥的维修方案

2005年开始改造的解放桥,通过对电路、传动等开启系统的全面整修,恢复了原有的可开启功能,同时对整个桥的钢梁进行了维修和加固,并重新油饰。由于锈蚀严重,天津城建设计院的专家和同济大学的教授、专家一道,对锈蚀严重的部分零部件进行了1:1的复制和更换。据工程人员介绍,复制的零件数量并不是很多,为了尽可能保持这座古董桥的“原汁原味”,更换的零件多是解放桥保证开启旋转系统的主要零部件,而对于其他部分则采取现场修复、对结构杆件进行除锈、防锈涂刷处理等方法。解放桥在改造的过程中使用了千斤顶托起整个桥身。虽然海河改造过程中,工程技术人员曾成功抬升了狮子林桥和北安桥,但抬升一座钢桥尚属首次。技术人员介绍说,抬升钢桥的难度更大,因为桥本身的主要杆件相互支撑受力,如外力不均,结构极容易发生变形,加之岁月侵蚀,对解放桥的改造工程难度超过了其他的桥梁。改造后的新桥将在原来的基础上抬升20厘米,桥下净空增加60厘米。相信不久后百年解放桥将以崭新的面貌迎接广大游客。原地改造◇主要病害改造解放桥分为“三步走”经过长时间的检测发现,解放桥的主要病害包括:开启系统齿座梁内部发生锈蚀;齿座梁下缘锈损严重,角钢锈断,腹板下方截面锈损;齿座梁上方齿槽内产生锈蚀,锈层厚约20毫米;弧形梁除板间锈胀和顶部锈蚀外,中腹大量积水,板件锈损严重等。也正是因为这些病害一直以来没有得到根治,所以,解放桥的开启功能已经丧失了三十多年,最后一次开启还是在1973年。◇修旧如旧为保持老桥的历史风貌,解放桥将按照“修旧如旧”的原则整修、翻新,不会添加新的设计元素。改造主要分为三个步骤:对桥上所有零件进行修复和养护;恢复原有开启功能;重新铺装桥面。在改造过程中,解放桥桥面不会加宽。改造后,解放桥将恢复“施尔泽尔”式开启功能,即桥面从中间向两侧向上打开直到与原桥面接近垂直,同时双叶向后移动,保证游轮顺利通过。◇保证原味保证原味儿制“英式”零件为消除解放桥的病害并保持其原有的结构和功能,需要将锈蚀严重的零件全部更换成新制的零件。据了解,当年解放桥建桥时所用的零件均为英国生产的“英式”零件。为了保持解放桥的“原汁原味”,本市相关部门在全国仅有的两家生产企业之一为解放桥量身订制了和当年一模一样的“英式”零件,这些零件都将在车间里按照原件1:1的比例进行复制,然后对其进行后期加工,最后再运往施工现场进行安装。目前,零件的复制、加工工作接近尾声,现场安装已经开始。◇保整体形象工艺仿当年保整体形象不仅仅是零件,连施工工艺也要模仿当年的样子,这样才能保证解放桥的整体形象、功能不受到破坏。据了解,解放桥改造过程中将使用和当年一样的“热铆”工艺,即将铆钉加热,然后利用高温把钢板紧紧夹在中间,从而使桥体结构更加紧密、结实、稳定。目前,解放桥人行道已断行,非机动车、行人可以从解放桥主桥通过。待解放桥上的零件更换完毕,开启功能恢复后,将进行改造的最后一步:重新铺装桥面。届时,解放桥将整体断行,行人和车辆均可绕行大沽桥。

天津解放桥的维修方案

2005年开始改造的解放桥,通过对电路、传动等开启系统的全面整修,恢复了原有的可开启功能,同时对整个桥的钢梁进行了维修和加固,并重新油饰。由于锈蚀严重,天津城建设计院的专家和同济大学的教授、专家一道,对锈蚀严重的部分零部件进行了1:1的复制和更换。据工程人员介绍,复制的零件数量并不是很多,为了尽可能保持这座古董桥的“原汁原味”,更换的零件多是解放桥保证开启旋转系统的主要零部件,而对于其他部分则采取现场修复、对结构杆件进行除锈、防锈涂刷处理等方法。 解放桥在改造的过程中使用了千斤顶托起整个桥身。虽然海河改造过程中,工程技术人员曾成功抬升了狮子林桥和北安桥,但抬升一座钢桥尚属首次。技术人员介绍说,抬升钢桥的难度更大,因为桥本身的主要杆件相互支撑受力,如外力不均,结构极容易发生变形,加之岁月侵蚀,对解放桥的改造工程难度超过了其他的桥梁。 改造后的新桥将在原来的基础上抬升20厘米,桥下净空增加60厘米。相信不久后百年解放桥将以崭新的面貌迎接广大游客。

南京理工大学有建筑与城市规划之类的建筑学专业吗

  有的,南京理工大学建筑与城市规划类的专业在它的土木工程系,可以登陆到它的网站上查看相关专业的信息的。

  1,建筑专业
  是一门以学习如何设计建筑为主,同时学习相关基础技术课程的学科。主要学习的内容是通过对一块空白场地的分析,同时依据其建筑对房间功能的要求,建筑的类型,建筑建造所用的技术及材料等,对建筑物从平面,外观立面及其内外部空间进行从无到有的设计。
  2,城市规划专业
  本专业培养具备城市规划、城市设计等方面的知识,能在城市规划设计、城市规划管理、决策咨询、房地产开发等部门从事城市规划设计与管理,开展城乡道路交通规划、城乡生态规划、园林游憩系统规划,并能参与城乡社会与经济发展规划、区域规划、城乡开发、房地产筹划以及相关政策法规研究等方面工作的城乡规划学科高级工程技术人才。
  


太原理工大学建筑学专业怎么样

太原理工大学的建筑学实力还可以,拥有该学科的一级学科硕士点,在山西省来说是最好的啦,不过在全国范围来看,在建筑学界的声誉还是不高,真正强的是著名的建筑老八校:清华大学、东南大学、同济大学、天津大学、华南理工大学、重庆建筑大学(已并入重庆大学)、哈尔滨建筑大学(已并入哈尔滨工业大学)和西安建筑科技大学。


桥梁支座更换施工方法有哪些分类

枕木满布式支架法
枕木满布式支架法工作原理为在地面上设置枕木,以枕木为基础,设置满布式或部分木支架至桥梁梁体处,在支架上安置千斤顶顶升梁体。支架主要由排架、纵梁(钢梁)等部件组成,其纵梁为受压构件。适用范围:适用宽浅河枯水季,桥下净空高度不大(3m~4m),桥梁跨径一般不大于4m的桥梁。优点:架设设备比较简单,施工方法简单易于操作。对于小跨度的梁桥,用支架法施工具有一定的优势。缺点:支架法施工工期长、支架和模板用钢耗、木量大、成本高;不适宜桥墩过高的场合,桥墩过高时为保证顶升过程的安全,支架的稳定、承载力都要提高,则支架必须高大,不经济;对孔跨下面的场合不能用本方法,如果地基过于松软时则必须浇注混凝土地坪作为支架基础,不经济。
桥面钢导梁法
桥面钢导梁法的支撑位置在桥面上,支撑面为顶升梁相邻跨的梁体。在顶升梁上绑扎钢带,安置钢梁,以相邻跨梁体为支撑基础,配合顶升设备,抬升梁体。适用范围:适用于跨径较小、单孔自重不大的桥梁类型,特别适用于对桥下环境不利施工的情况。优点:设备简单,施工方便;对桥下场所无要求,适用于多种桥梁类型,整个起梁过程都在桥上进行,不影响桥下通航、通车要求;无需支架,节约费用,工期短。缺点;钢梁长度有限制,跨径不可过大;要求用较大吨位千斤顶,对桥面局部压力较大,有可能损伤梁体,需要局部压力进行验算。
端部整体顶升法
端部整体顶升法的工作原理和枕木法相似,支撑面为桥墩下部新建顶升基础。基本施工步骤为:以地面为支撑,在墩台两侧建立顶升基础,然后用贝雷梁、槽钢、螺栓连接成受力钢梁,受力钢梁上架千斤顶,在梁两端同步整体顶升,待梁体抬升到施工高度后更换支座。此法为枕木满布式支架法的变形方法。适用范围:桥梁下部为非流水通过物,桥下净空不能过高的桥梁。优点:对桥下通车影响不大,可自由通行,能满足桥下不中断交通的要求。与采用少数大吨位的千斤顶相比较,无须为应力集中设置过大的传力杆及横梁。缺点:只适用于非通航河流、河水流量较小可做围堰处理的桥梁。对桥跨下的地基基础要求较高,需建顶升基础,工序时间长,工期较长。
鞍型支架法
鞍型支架法是直接用桥墩本身做支撑在盖梁上搭设支架,设计成“鞍型支架”,放置千斤顶来顶升梁体。其基本施工步骤为:先将钢梁穿过盖梁,然后在两侧挂上预先焊好的L型挂架,在其上安置千斤顶,同步在两侧梁上加吊篮,最后在吊篮上控制千斤顶抬升梁体。适用范围:该方法适用于复杂的河床地质情况,适用于公路、铁路立交桥的情况,无需大型架设设备或杆件,优于地面支撑形式。优点:施工方便,该方法不受河床地质、桥下水深和桥梁高度的限制。同时施工现场集中,便于管理;缩短中断交通时间,整个操作过程都是在桥下进行,准备工作期间不影响交通,起升梁时中断交通时间短;该方法除顶升力外不需任何动力,对桥梁各部位及其整体性无任何损伤,且支架可多次使用,省工省时。缺点:顶升过程中盖梁会发生偏心受压现象和局部承压过高的现象以及支架变形过大的现象,顶升前须严格的验算;有些桥梁必须在墩台上留有承台式预埋件;梁两侧的千斤顶,顶点要求对称精度高,且顶升过程中要严格控制梁的高程。
钢扁担梁法
钢扁担梁法的支撑位置在桥面上,支撑面为顶升梁相邻跨的梁体。在顶升梁上打孔,绑扎钢带,安置钢扁担梁,以相邻跨梁体为支撑基础,配合顶升设备,抬升梁体。该法与桥面钢导梁法的顶升基础相同,都是以桥面为基础,不同之处是钢导梁不用横跨整个桥孔来顶升梁体,而是将钢导梁缩短到4m长左右,运用扁担的原理,利用钢扁担梁和钢带在相邻跨用千斤顶顶升梁体。适用范围:适用于跨径较小、单孔自重不大的桥梁类型,特别适用于对桥下环境不利施工的情况。优点:施工方便,无需大型设备,较桥面钢导梁法省材料;对桥下场所无要求,适用于多种桥梁类型,整个起梁过程都在桥上进行,不影响桥下通航、通车要求;无需支架,节约费用,工期短。缺点:钢扁担梁结构设计较为复杂,需进行专门计算;要求用较大吨位千斤顶,对桥面局部压力较大,有可能损伤梁体,需要对局部压力进行验算;桥墩受较大偏心荷载,需进行偏心验算;需要对梁体钻孔,为有损顶升。
钢蝴蝶梁法
钢蝴蝶梁法支撑位置在盖梁上,通过液压千斤顶顶升蝴蝶梁的翅梁来提升梁体。其基本施工步骤为:桥下组拼吊篮,同时桥面上安装支架并配重,卷扬机拉升吊篮到位作为施工平台,安放钢蝴蝶梁,定位千斤顶,顶升梁体。适用范围:该方法适用于山区高墩,复杂的河床地质情况,特别是梁底距盖梁很近,无法安装千斤顶的情况。优点:充分利用盖梁这个平台,施工方便,无大型机具设备;对环境的适应能力很强,不受河床地质、桥下水深和桥梁高度的限制;整个操作过程都是在桥下进行,施工快捷,缩短了封闭交通的时间;不受千斤顶行程限制,可一次顶升到位;取换支座简单;较鞍型支架法安装更为方便,也更为安全。缺点:要求盖梁较为宽大能安放液压千斤顶且千斤顶数量较多,对于双排支座的盖梁如果空间狭小就需要另辟溪径。
钢套箍法
钢套箍法通过圆箍与桥墩混凝土之间的摩擦力提供竖向支撑。基本施工步骤如下:桥下组拼吊篮,同时桥面上安装支架并配重,卷扬机拉升吊篮到位作为施工平台,临时连接两侧的吊篮进行固定,通过吊篮上的卷扬机拉升钢套箍并用高强螺栓按实际要求锚紧,移动吊篮到合适位置拉升组拼贝雷梁与工字钢并安放在特制的牛腿上,放置液压千斤顶顶升梁体,更换支座。适用范围:适用于梁底空间狭小,无法在盖梁上安放顶升设备的圆截面高墩梁桥。优点:充分利用桥梁本身的结构,可以通过增长钢套箍的长度提高其承载能力,能适用不同跨度的简支转连续梁桥;对环境的适应能力很强,不受河床地质、桥下水深和桥梁高度的限制;不受千斤顶行程限制,可一次顶升到位;在钢蝴蝶梁法无能为力时,钢套箍法能很好的完成顶升任务。缺点:施工工序较为繁琐,施工工期长;临时构件较多,成本较高;钢套箍法只适用于桥墩为圆形的情况,对其他方形、异形截面均不能使用。
气动顶升法
气动顶升法是从根本上改变了传统的顶升设备,即用集群气囊替换液压千斤顶,上述所有支座更换方法只要用气囊取代千斤顶都可以称之为气动顶升法。其主要工作特点:起重量不受限制,通过气动提升系统的扩展组合,能满足百吨级甚至千吨级桥梁构件的顶升;同步控制,安全受控;可操作性好,气动提升系统体积大,重量轻;顶升过程平稳,无附加冲击载荷;对顶升的基础要求低,特别适合临时预制构件的工程;有利于保护桥梁构件,采用分布荷载,避免了液压起重的集中载荷。


上一篇:quick audience

下一篇:高达创形者