基本算法

时间:2024-03-11 05:06:33编辑:奇闻君

机器学习一般常用的算法有哪些?

机器学习是人工智能的核心技术,是学习人工智能必不可少的环节。机器学习中有很多算法,能够解决很多以前难以企的问题,机器学习中涉及到的算法有不少,下面小编就给大家普及一下这些算法。一、线性回归一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。当然我们可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。就目前而言,线性回归已经存在了200多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术。二、Logistic 回归它是解决二分类问题的首选方法。Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。logistic 函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1并预测类别值。像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。三、线性判别分析(LDA)在前面我们介绍的Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。而LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA包括两个,第一就是每个类别的平均值,第二就是所有类别的方差。而在线性判别分析,进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布,因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。四、决策树决策树是预测建模机器学习的一种重要算法。决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点。而决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。当然决策树的有点就是决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。五、朴素贝叶斯其实朴素贝叶斯是一个简单但是很强大的预测建模算法。而这个模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来。第一种就是每个类别的概率,第二种就是给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当我们的数据是实值时,通常假设一个高斯分布,这样我们可以简单的估计这些概率。而朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。所以说,朴素贝叶斯是一个十分实用的功能。六、K近邻算法K近邻算法简称KNN算法,KNN 算法非常简单且有效。KNN的模型表示是整个训练数据集。KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数类别值。而其中的诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同,那么最简单的技术是使用欧几里得距离,我们可以根据每个输入变量之间的差值直接计算出来其数值。当然,KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算。我们还可以随时更新和管理训练实例,以保持预测的准确性。七、Boosting 和 AdaBoost首先,Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。而AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显著的是随机梯度提升。当然,AdaBoost 与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每一个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。所以说,由于在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据十分重要。八、学习向量量化算法(简称 LVQ)学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。而学习向量量化的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测。最相似的近邻通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或作为预测。如果大家重新调整数据,使其具有相同的范围,就可以获得最佳结果。当然,如果大家发现KNN在大家数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求

数学中都有什么算法啊?

定义法、配方法、待定系数法、换元法、反证法、数学归纳法、导数法、赋值法、消去法、定比分离法、比较法、分析法、综合法 ,还有很多桑
介里有几个比较详细的哈.
一、换元法
“换元”的思想和方法,在数学中有着广泛的应用,灵活运用换元法解题,有助于数量关系明朗化,变繁为简,化难为易,给出简便、巧妙的解答.
在解题过程中,把题中某一式子如f(x),作为新的变量y或者把题中某一变量如x,用新变量t的式子如g(t)替换,即通过令f(x)=y或x=g(t)进行变量代换,得到结构简单便于求解的新解题方法,通常称为换元法或变量代换法.
用换元法解题,关键在于根据问题的结构特征,选择能以简驭繁,化难为易的代换f(x)=y或x=g(t).就换元的具体形式而论,是多种多样的,常用的有有理式代换,根式代换,指数式代换,对数式代换,三角式代换,反三角式代换,复变量代换等,宜在解题实践中不断总结经验,掌握有关的技巧.
例如,用于求解代数问题的三角代换,在具体设计时,宜遵循以下原则:(1)全面考虑三角函数的定义域、值域和有关的公式、性质;(2)力求减少变量的个数,使问题结构简单化;(3)便于借助已知三角公式,建立变量间的内在联系.只有全面考虑以上原则,才能谋取恰当的三角代换.
换元法是一种重要的数学方法,在多项式的因式分解,代数式的化简计算,恒等式、条件等式或不等式的证明,方程、方程组、不等式、不等式组或混合组的求解,函数表达式、定义域、值域或最值的推求,以及解析几何中的坐标替换,普通方程与参数方程、极坐标方程的互化等问题中,都有着广泛的应用.
二、消元法
对于含有多个变数的问题,有时可以利用题设条件和某些已知恒等式(代数恒等式或三角恒等式),通过适当的变形,消去一部分变数,使问题得以解决,这种解题方法,通常称为消元法,又称消去法.
消元法是解方程组的基本方法,在推证条件等式和把参数方程化成普通方程等问题中,也有着重要的应用.
用消元法解题,具有较强的技巧性,常常需要根据题目的特点,灵活选择合适的消元方法
三、待定系数法
按照一定规律,先写出问题的解的形式(一般是指一个算式、表达式或方程),其中含有若干尚待确定的未知系数的值,从而得到问题的解.这种解题方法,通常称为待定系数法;其中尚待确定的未知系数,称为待定系数.
确定待定系数的值,有两种常用方法:比较系数法和特殊值法.
四、判别式法
实系数一元二次方程
ax2+bx+c=0 (a≠0) ①
的判别式△=b2-4ac具有以下性质:
>0,当且仅当方程①有两个不相等的实数根
△ =0,当且仅当方程①有两个相等的实数根;
<0,当且仅当方程②没有实数根.
对于二次函数
y=ax2+bx+c (a≠0)②
它的判别式△=b2-4ac具有以下性质:
>0,当且仅当抛物线②与x轴有两个公共点;
△ =0,当且仅当抛物线②与x轴有一个公共点;
<0,当且仅当抛物线②与x轴没有公共点.
五、 分析法与综合法
分析法和综合法源于分析和综合,是思维方向相反的两种思考方法,在解题过程中具有十分重要的作用.
在数学中,又把分析看作从结果追溯到产生这一结果的原因的一种思维方法,而综合被看成是从原因推导到由原因产生的结果的另一种思维方法.通常把前者称为分析法,后者称为综合法.
六、 数学模型法
例(哥尼斯堡七桥问题)18世纪东普鲁士哥尼斯堡有条普莱格河,这条河有两个支流,在城中心汇合后流入波罗的海.市内办有七座各具特色的大桥,连接岛区和两岸.每到傍晚或节假日,许多居民来这里散步,观赏美丽的风光.年长日久,有人提出这样的问题:能否从某地出发,经过每一座桥一次且仅一次,然后返回出发地?
数学模型法,是指把所考察的实际问题,进行数学抽象,构造相应的数学模型,通过对数学模型的研究,使实际问题得以解决的一种数学方法.
七、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式.通过配方解决数学问题的方法叫配方法.其中,用的最多的是配成完全平方式.配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它.
八、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式.因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用.因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等.
九、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法.我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决.
介里LL没有说很详细桑,内啥简便算法我也一起说了桑丶
乘法交换律,乘法分配律,加法交换律,加法结合律,乘法分配律,


数据结构中常用的算法有哪些啊

基本:
线性表,链表,栈,队列
排序:
快速排序,堆排序,归并排序,希尔排序,插入排序,选择排序
二叉树:
前序,中序,后序遍历,层次遍历,包括递归算法和非递归算法两种
AVL树,Huffman编码
二叉树和树,森林之间的转换,穿线树
图算法:
深度优先遍历算法,广度优先遍历算法,最小生成树,最短路径
字符串:
查找子串,KMP算法

以上都是比较基本的算法,一定要弄懂


程序员必须掌握哪些算法

  A搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。  集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。  二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。  分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。  Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。  数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。  Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。  Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。  离散微分算法(Discrete differentiation)  动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构算法  欧几里得算法(Euclidean algorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。  期望-最大算法(Expectation-maximization algorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一步上求得的最大可能值来计算参数的值。  快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。  梯度下降(Gradient descent)——一种数学上的最优化算法。  哈希算法(Hashing)  堆排序(Heaps)  Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。  LLL算法(Lenstra-Lenstra-Lovasz lattice reduction)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。  最大流量算法(Maximum flow)——该算法试图从一个流量网络中找到最大的流。它优势被定义为找到这样一个流的值。最大流问题可以看作更复杂的网络流问题的特定情况。最大流与网络中的界面有关,这就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一个流网络中的最大流。  合并排序(Merge Sort)  牛顿法(Newton's method)——求非线性方程(组)零点的一种重要的迭代法。  Q-learning学习算法——这是一种通过学习动作值函数(action-value function)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。  两次筛法(Quadratic Sieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法Number Field Sieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。  RANSAC——是“RANdom SAmple Consensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。  RSA——公钥加密算法。首个适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。  Schönhage-Strassen算法——在数学中,Schönhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(N log(N) log(log(N))),该算法使用了傅里叶变换。  单纯型算法(Simplex Algorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待最大化(或最小化)的固定线性函数。  奇异值分解(Singular value decomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdetermined linear systems)、矩阵逼近、数值天气预报等等。  求解线性方程组(Solving a system of linear equations)——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。  Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域( homogenous region),看看它是否属于边缘,还是是一个顶点。  合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:  查找:判断某特定元素属于哪个组。  合并:联合或合并两个组为一个组。  维特比算法(Viterbi algorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。

参加数学建模有哪些必学的算法

1. 蒙特卡洛方法:
又称计算机随机性模拟方法,也称统计实验方法。可以通过模拟来检验自己模型的正确性。

2. 数据拟合、参数估计、插值等数据处理
比赛中常遇到大量的数据需要处理,而处理的数据的关键就在于这些方法,通常使用matlab辅助,与图形结合时还可处理很多有关拟合的问题。

3. 规划类问题算法:
包括线性规划、整数规划、多元规划、二次规划等;竞赛中又很多问题都和规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件,几个函数表达式作为目标函数的问题,这类问题,求解是关键。
这类问题一般用lingo软件就能求解。

4. 图论问题:
主要是考察这类问题的算法,包括:Dijkstra、Floyd、Prime、Bellman-Ford,最大流、二分匹配等。熟悉ACM的人来说,应该都不难。

5. 计算机算法设计中的问题:
算法设计包括:动态规划、回溯搜索、分治、分支定界法(求解整数解)等。

6. 最优化理论的三大非经典算法:
a) 模拟退火法(SA)
b) 神经网络(NN)
c) 遗传算法(GA)


7. 网格算法和穷举算法

8. 连续问题离散化的方法
因为计算机只能处理离散化的问题,但是实际中数据大多是连续的,因此需要将连续问题离散化之后再用计算机求解。
如:差分代替微分、求和代替积分等思想都是把连续问题离散化的常用方法。

9. 数值分析方法
主要研究各种求解数学问题的数值计算方法,特别是适用于计算机实现的方法与算法。
包括:函数的数值逼近、数值微分与数值积分、非线性返程的数值解法、数值代数、常微分方程数值解等。
主要应用matlab进行求解。

10. 图像处理算法
这部分主要是使用matlab进行图像处理。
包括展示图片,进行问题解决说明等。


上一篇:庄晓莹科学家简介

下一篇:南方天睿