ansys流体分析实例

时间:2024-03-15 20:41:34编辑:奇闻君

ansys中怎样做热力耦合分析

首定义热分析单元(我经常选择三维实体单元solid70),接着定义材料参数、建模、划分网格,并施加温度载荷(一般热分析比较多的是在所有外表面加对流系数),然后计算。计算完之后进行单元转换,将热单元转换成结构单元(element switch),并且施加载荷(压力、重力等)和约束,然后将前面热分析计算得到的结果施加在结构分析单元上(solution——define loda——apply——structure——temperature——from therm analy)。最后计算。


ANSYS 热结构耦合分析求助

个人建议:
1、选择70号热场单元,先做热场分析,然后转为结构场,将热场分析结果作为结构场载荷即可;
2、因为是间歇性工作,所以在热场分析中,一定要记得按照实际工作、间歇做载荷步历程;
3、材料属性查相关手册或者网站,但一定要是温度曲线
4、在常规后处理中查看温度分布情况,话说你竟然问这个问题,估计你要把这个模型搞定有难度……
5、优化方案不是在什么地方查看的,想要知道优化方向,就需要做优化设计,等你把模型能够完整 的计算完之后可以再查相关资料吧
6、一定要做实际的实验,和你的计算结果进行比较,如果两者吻合,以后就不用做实验,直接仿真即可;否则要对算法进行修改
7、佛祖保佑你能如愿算完吧,ansys用起来的话一定要有相关的专业知识才能做好,否则你都不知道你的计算结果是对是错;


理工学科问题?

许多同学由于没有正确掌握学习方法,有的虽然知道其重要性但不得学习要领,有的则误入题海,茫茫然不知所措,导致学绩不如人意。因此在学习数学的时候,我们有必要学会如何掌握知识,掌握技能,培养能力,以及锻炼成良好的学习心理品质,把握好关键学习阶段,最终掌握学习方法进而形成综合学习的能力。
学习中主要注意的一些问题:



1、在看书的时候正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。



由于理工科是一大类知识的连贯性和逻辑性都很强的学科,正确掌握我们学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要注意查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。只有基础扎实,我们成绩才会提高。



2、自我培养数学运算能力,养成良好的学习习惯。



每次考完试后,我们常会听到一些同学说:这次考试我又粗心了。而粗心最多的一种现象就是由于跳步骤产生的错误,并且屡错不改。这实际上是不良的学习习惯、求快心理造成的数学运算技能的不过关。要知道数学题的每一步都是运用一定的法则来完成的,如果在解题过程中忽视了某一步,那么就会发生这一步的法则没有正确的运用,进而产生错解。
因此,运算能力的提高从根本上说是要弄懂“算理”,不仅知道怎样算,而且知道为什么这样算,这就是我们常说的既要知其然又要知其所以然,从而把握运算的方向、途径和程序,一步一步仔细完成,使得运算能力一步一步地得到提高。同学们请注意,如果你有上述类似跳步的现象应及时改正,否则,久而久知,你会有一种恐惧心理,还没有开始解题就已经担心自己会做错,结果这样就会错得越多。



3、重视知识的获取过程,培养抽象、概括分析、综合、推理证明能力。



老师上课在讲解公式、定理、概念时,一般都揭示它们的形成过程,而这个过程却又是同学们最容易忽视的,有的同学认为:我只需听懂这个定理本身到时会用就行了,不需要知道他们是怎么得出的。这样的想法是不对的。因为老师在讲解知识的形成,发生的过程中,讲解的就是问题的一个思维过程,揭示的是问题解决的一种思想和方法,其中包含了抽象、概括分析、综合、推理等能力。如果我们不重视的话,实际就失去了一次从中吸取经验,锻炼和发展逻辑思维能力的机会。


4.把握好学期初始阶段的学习。


学习贵在持之以恒,锲而不舍的精神,但同时我们注意到新学期初的学习很重要,它起到一个承上启下的重要作用。假期已经结束,新学期开始了,同学们又要投入到了新的学习生活。时间不算短的假期,同学们一定感到轻松了很多。刚开学,大家可能感到还不那么紧张,然而我们的学习却更需要从学期初抓起,抓紧期初学习很重要。


  学期之初,所学内容少,作业量小,同学们常有一种轻松之感。然而此时正是我们学习的好时机。一方面知识前后是有联系的,孔子曾说:“温故而知新”,我们可以利用这段时间将以前所学相关内容温习一下,以便于更好地学习新知识。另一方面,基础稍微差一点的同学,也可以利用这段时间弥补过去学习上的不足之处,这种弥补对新知识的学习也是较为有益的。


  学期之初,我们所学内容尽管少,但要真正全部消化并不容易。那我们就必须花时间去巩固,直至把所学内容全部理解为止。如此看来,尽管是学期之初,我们仍然松懈不得。


有一个良好的开端才会有一个良好的结果。
学业成绩的提高,学习方法的掌握都和同学们良好的学习习惯分不开的,因此在最后我们再一起探讨一下良好的学习习惯。


良好的学习习惯包括:听讲、阅读、思考、作业。


听讲:应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。
阅读:阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题应与同类参考书联系起来一同学习,博采众长,增长知识,发展思维。
思考:学会思考,在问题解决之后再探求一些新的方法,学着从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律。
作业:要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学。


总之,在学习的过程中,我们要认识到学习的重要性,充分发挥自己的主观能动性,从小的细节注意起,养成良好的学习习惯,以培养思考问题、分析问题和解决问题的能力。



用UG完成图后,ANSYS DM导入,如何提取流道?(流道中有很多相贯流道,填充失败,提示未修复平面)

利用DM进行内流道抽取与固体有限元计算需要实体模型不同,流体计算域需要的是流道模型。简言之,流体域指的是流体能够达到的区域。因此,需要对CAD软件创建的固体实体模型进行处理,以抽取流体计算区域。DM(DesignModeler)是ANSYS workbench中一个模块,主要用于几何模型创建及计算模型准备。其提供了一系列工具用于流体计算域的生成。主要有:Fill功能、几何布尔运算。这里以一个简单的几何实例来说明如何在DM中进行内流道抽取。1、实体模型实体3D模型可以在3D建模软件(如Solidworks、UG、CATIA、ProE等建模软件)中生成,也可以直接利用DM创建几何模型。本例中的实体模型如下图所示。图1原始几何模型2、将几何模型导入至DM中进入DM模块,进入菜单File > Import external Geometry File…,选择读入创建的几何,然后点击Generate按钮,生成几何。方式一:采用Fill中的By Cavity方法这是最简单的一种方式,选取模型的所有内表面即可。点击菜单Tools > Fill,进入Fill功能面板。选择extraction type为By Cavity,同时选择模型的所有内表面。点击generate按钮。可以在树形菜单中观察到生成了一个新的solid,我们将开始导入的solid删除掉。这时剩下的即为我们所要生成的流体域模型。如下图所示。图2 设置fill 图3 生成的流体域 图4 选择edge生成surface方式二:采用Fill中的By Gaps方法对于内表面复杂的几何,逐个选取自然大为不变,幸好DM提供了By Gaps的方法。不过在使用此方法之前,需要将开口位置生成surface进行封闭。对于本例中的几何,需要利用edge生成5个表面将模型封闭起来。1、创建surface。点击菜单Concept > Surface from edges选择如图所示的edge,点击generate按钮,生成surface.图5 生成surface 图6设置fill属性图7 生成的流体域2、利用Fill创建流体域。与方法1类似,不过选择extraction type为By Caps,同时设置target bodies为all bodies。点击generate按钮,生成的流体域模型与方法1完全相同。方式三:创建几何利用布尔运算创建流体域由于本例几何简单,可以创建一个与几何外部边界重合的模型,然后利用布尔运算进行相减。1、创建外部几何利用底部面创建plane,利用外部边创建操作,利用add frozen拉伸至上表面,生成几何如图8所示。图8 拉伸属性 图9生成的几何模型 图10生成计算域2、设置operation为subtract,设置target bodies为上一步创建的几何,选择tool bodies为原始几何。点击generate按钮生成计算域模型。如图10所示。 总结:1、简要描述了DM中三种进行内流道抽取方法。2、利用fill命令比较复杂,但是对于外边界复杂的几何比较有效。而采用布尔运算的方式创建流道,则要求创建的几何完全包裹内部流体区域。对于外表面复杂的情况不易处理。3、内部几何面较多不易选取的时候,建议使用Fill命令中的By Gaps进行流道抽取。


学习ansys的体会

ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等, 是现代产品设计中的高级CAD工具之一。

CAE的技术种类有很多,其中包括有限元法(FEM,即Finite Element Method),边界元法(BEM,即Boundary Element Method),有限差法(FDM,即Finite Difference Element Method)等。每一种方法各有其应用的领域,而其中有限元法应用的领域越来越广,现已应用于结构力学、结构动力学、热力学、流体力学、电路学、电磁学等。

ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。因此它可应用于以下工业领域: 航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。

ANSYS软件提供的分析类型如下:

  1.结构静力分析

  用来求解外载荷引起的位移、应力和力。静力分析很适合求解惯性和阻尼对结构的影响并不显著的问题。ANSYS程序中的静力分析不仅可以进行线性分析,而且也可以进行非线性分析,如塑性、蠕变、膨胀、大变形、大应变及接触分析。

  2.结构动力学分析

  结构动力学分析用来求解随时间变化的载荷对结构或部件的影响。与静力分析不同,动力分析要考虑随时间变化的力载荷以及它对阻尼和惯性的影响。ANSYS可进行的结构动力学分析类型包括:瞬态动力学分析、模态分析、谐波响应分析及随机振动响应分析。

  3.结构非线性分析

  结构非线性导致结构或部件的响应随外载荷不成比例变化。ANSYS程序可求解静态和瞬态非线性问题,包括材料非线性、几何非线性和单元非线性三种。

  4.动力学分析

  ANSYS程序可以分析大型三维柔体运动。当运动的积累影响起主要作用时,可使用这些功能分析复杂结构在空间中的运动特性,并确定结构中由此产生的应力、应变和变形。

  5.热分析

  程序可处理热传递的三种基本类型:传导、对流和辐射。热传递的三种类型均可进行稳态和瞬态、线性和非线性分析。热分析还具有可以模拟材料固化和熔解过程的相变分析能力以及模拟热与结构应力之间的热-结构耦合分析能力。

  6.电磁场分析

  主要用于电磁场问题的分析,如电感、电容、磁通量密度、涡流、电场分布、磁力线分布、力、运动效应、电路和能量损失等。还可用于螺线管、调节器、发电机、变换器、磁体、加速器、电解槽及无损检测装置等的设计和分析领域。

  7.流体动力学分析

  ANSYS流体单元能进行流体动力学分析,分析类型可以为瞬态或稳态。分析结果可以是每个节点的压力和通过每个单元的流率。并且可以利用后处理功能产生压力、流率和温度分布的图形显示。另外,还可以使用三维表面效应单元和热-流管单元模拟结构的流体绕流并包括对流换热效应。

  8.声场分析

  程序的声学功能用来研究在含有流体的介质中声波的传播,或分析浸在流体中的固体结构的动态特性。这些功能可用来确定音响话筒的频率响应,研究音乐大厅的声场强度分布,或预测水对振动船体的阻尼效应。

  9.压电分析

  用于分析二维或三维结构对AC(交流)、DC(直流)或任意随时间变化的电流或机械载荷的响应。这种分析类型可用于换热器、振荡器、谐振器、麦克风等部件及其它电子设备的结构动态性能分析。可进行四种类型的分析:静态分析、模态分析、谐波响应分析、瞬态响应分析


软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。

前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;
ANSYS的前处理模块主要有两部分内容:实体建模和网格划分。
  ●实体建模
  ANSYS程序提供了两种实体建模方法:自顶向下与自底向上。自顶向下进行实体建模时,用户定义一个模型的最高级图元,如球 、棱柱,称为基元,程序则自动定义相关的面、线及关键点。用户利用这些高级图元直接构造几何模型,如二维的圆和矩形以及三维的块 、球、锥和柱。无论使用自顶向下还是自底向上方法建模,用户均能使用布尔运算来组合数据集,从而“雕塑出”一个实体模型。ANS YS程序提供了完整的布尔运算,诸如相加、相减、相交、分割、粘结和重叠。在创建复杂实体模型时,对线、面、体、基元的布尔操作 能减少相当可观的建模工作量。ANSYS程序还提供了拖拉、延伸、旋转、移动、延伸和拷贝实体模型图元的功能。附加的功能还包括 圆弧构造、切线构造、通过拖拉与旋转生成面和体、线与面的自动相交运算、自动倒角生成、用于网格划分的硬点的建立、移动、拷贝和 删除。自底向上进行实体建模时,用户从最低级的图元向上构造模型,即:用户首先定义关键点,然后依次是相关的线、面、体。
  ●网格划分
  ANSYS程序提供了使用便捷、高质量的对CAD模型进行网格划分的功能。包括四种网格划分方法:延伸划分、映像划分、自由 划分和自适应划分。延伸网格划分可将一个二维网格延伸成一个三维网格。映像网格划分允许用户将几何模型分解成简单的几部分,然后 选择合适的单元属性和网格控制,生成映像网格。ANSYS程序的自由网格划分器功能是十分强大的,可对复杂模型直接划分,避免了 用户对各个部分分别划分然后进行组装时各部分网格不匹配带来的麻烦。自适应网格划分是在生成了具有边界条件的实体模型以后,用户 指示程序自动地生成有限元网格,分析、估计网格的离散误差,然后重新定义网格大小,再次分析计算、估计网格的离散误差,直至误差 低于用户定义的值或达到用户定义的求解次数。


分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;

后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。

软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。


上一篇:铂铭行

下一篇:平昌冬奥会金牌榜