现在,如果一般做细金属线材做拉伸试验,应该选什么夹具?
粗的线材可以用楔形夹具夹持,这里根据样品情况可以选线材专用的楔形夹具或者是普通材料及线材两用的。细的线材可以使用线材专用的夹具▪⋅,线材专用夹具有单圈缠绕夹具、多圈缠绕夹具、渐开线夹具、摆轮夹具等,根据材料、强度、线径等不同选择,建议可以问一下广州广州广材试验机厂,他们有几十年的试验机生产经验,有多年积累,有多样化的解决方案可以选择。
现在,如果一般做细金属线材做拉伸试验,应该选什么夹具?
粗的线材可以用楔形夹具夹持,这里根据样品情况可以选线材专用的楔形夹具或者是普通材料及线材两用的。细的线材可以使用线材专用的夹具,线材专用夹具有单圈缠绕夹具、多圈缠绕夹具、渐开线夹具、摆轮夹具等,根据材料、强度、线径等不同选择,建议可以咨询一下广州广州广材试验机厂,他们有几十年的试验机生产经验,有多年积累,有多样化的解决方案可以选择。详细情况可以百度一下。
拉力试验机夹具是什么?
拉力试验机夹具
夹具根据试验方法不同,大致可分为:拉伸类夹具、压缩类夹具、弯曲类夹具、剥离类夹具、剪切类夹具等,其中拉伸类夹具约占夹具总量的80%左右。
我们知道通过夹具夹持试样(或产品)对试样进行加力,夹具所能承受的试验力的大小是夹具的一个很重要的指标。它决定了夹具结构的大小及夹具操作的劳动强度的大小,试样材质有金属和非金属之分,形状有大小之分。材料的成分组成各种各样,试样所能承受的试验力小到几十厘牛(如纺织用氨纶丝),大到几十吨(如普通钢材等;国内大的电子式试验机试验力为600KN,0.5级机),试样尺寸小到直径φ0.006mm的金丝,大到直径1m的PVC管材等。这就要求根据不同的试验力、试样的形状大小选择设计不同的夹具。
拉伸试验机夹具数据
拉伸试验机数据参数:测最大力:10KN20KN50KN100KN力值传感器:国产/进口高精度力传感器准确度等级:0.5级/1级试验力测试范围:1.0%~100%FS/ 0.4%~100%FS力值精度:±1%/±0.5%力值分辨率:1/200000位移示值误差: 示值的±0.5%以内位移分辩率:0.05um变形示值误差:示值的±0.5%以内测试速度范围:0.001~500mm/min/0.001-200mm/min测试行程(不含夹具):700mm体积(W*D*H):600x360x1850mm(可选)电源、功率:AC 220V±10% 50Hz,(可选)重量:约600KG/(可选)拉伸试验机夹具规格参数 及数据型号 最大荷重 抓头直径 上夹具重GC-20 200N φ0.5~5mm 160gGC-20TR 12kN φ0.5~3mm 100gGC-20TR4A 5kN φ2~9mm 4kgGC-20TR4B 10kN φ2~9mm 4kgGC-30-05 10N φ0.5~1mm 16gGC-30-10 10N φ1~1.5mm 16gGC-30-15 10N φ1.5~2mm 16g以上为您提供拉伸试验机数据及夹具的数据由济南万佳试验机为您回答!
拉伸试验的拉伸夹具
拉伸夹具本身就是一个锁紧机构。在结构上没有固定的模式, 根据不同的试样及试验力大小,在结构上差别很大.大试验力的试样一般采用斜面夹紧结构,随试验力的增加,夹紧力随之增加,台肩试样采用悬挂结构等,如果夹具按结构划分,可分为楔形类夹具(指采用斜面锁紧原理结构的夹具)、对夹类夹具(指采用单面或双面螺纹顶紧原理结构的夹具)、缠绕类夹具(指试样通过缠绕方式锁紧的夹具)、偏心类夹具指采用(偏心锁紧原理结构的夹具)、杠杆类夹具(指采用杠杆力放大原理结构的夹具)、台肩类夹具(指适用于台肩试样的夹具)、螺栓类夹具(指适用于螺栓、螺钉、螺柱等测试螺纹强度的夹具)、90°剥离类夹具(指适用于两试样进行垂具,直剥离的夹具)等。我们知道机械上的锁紧结构有:缧纹(即螺纹,螺钉,螺母)、斜面、偏心轮、杠杆等,夹具就是这些结构的组合体这些夹具的结构各有各的优缺点,例如:楔形夹具,初始夹紧力小,随试验力增加。夹紧力随之增加。对夹夹具,初始夹紧力大,随试验力增加。夹紧力随之减小。
万能拉伸强度试验机的夹具的选用
试验机夹具一、试验机必须具备三个要素:有加力装置:有夹具;有力值显示装置和记录。可见夹具在试验机中的重要性,我们通过夹具夹持试样(或产品),通过加力装置,力值显示装置和记录来判断材料(或成品)是否合格和达到预定的性能指标,没有可靠的夹具,这些就无法判断。夹具是试验机中根据材料试样变化而一个经常变化的部分,不同的材料需要不同的夹具,它是试验能否顺利进行及试验结果准确度高低的一个重要因素,合理正确的使用夹具有利于试验顺利的进行,随着科学技术的发展,各行各业对材料的要求越来越高,致使新材料不断的出现,对夹具的设计提出了更高的要求。二、夹具根据试验方法不同,大致可分为: 拉伸类夹具、压缩类夹具、弯曲类夹具、剥离类夹具、剪切类夹具等,其中拉伸类夹具约占夹具总量的80%左右。三、夹具的基本性能1.夹具对强度要求:通过夹具夹持试样(或产品)对试样进行加力,夹具所能承受的试验力的大小是夹具的一个很重要的指标,它决定了夹具结构的大小及夹具操作的劳动强度的大小,试样材质有金属和非金属之分,形状有大小之分,材料的成分组成各种各样,试样所能承受的试验力小到几十厘牛(如纺织用氨纶丝),大到几十吨如普通钢材等国内最大的电子式万能试验机试验力为600KN,0.5级机,试样尺寸小到直径φ0.006mm的金丝,大到直径1m的PVC管材等,这就要求根据不同的试验力、试样的形状大小选择设计不同的夹具.2. 对夹具材料的要求。①. 对一般的金属及非金属试样, 夹具的钳口直接与试样接触,一般都选用优质合金结构钢,合金高碳钢或低碳合金钢、冷作模具钢等,通过适当的热处理工艺淬回火、渗碳淬火等增加其强度、耐磨性. 有时也在钳口处镶装特种钢材,或在钳口表面喷涂金钢砂等.②. 对一些小试验力的夹具,与试样接触的表面采用粘软质胶皮等。(例如:塑料薄膜、纤维丝等试样的夹具夹持面,)③. 夹具体一般采用优质中碳钢、合金结构钢,通过适当的热处理工艺增加其力学性能。有时为了减轻重量也采用铝合金等有色金属及特种金属。有时也采用铸造结构铸钢,铸铝等3. 对夹具结构的要求。夹具的设计主要依据材料的试验标准及试样(特指成品及半成品)的型状及材质。以上所说的试验标准是指ISO、ASTM、DIN、GB、BS、JIS…等,还有企业标准、行业标准等,这些标准中一般都对试样制样及试验方法都有严格的规定,我们可以根据试样及试验方法的不同设计不同的夹具。对于特殊试样(成品及半成品的)使用的夹具,主要根据试样的型状及材质设计夹具。四、夹具的结构夹具本身没有固定的结构(如金属丝可采用缠绕方式夹紧,也可采用两个平板夹紧,金属薄板试样可采用楔形夹紧方式,也可采用对夹夹紧方式),这和主机有明显的区别,主机国内、国外的大同小异,而夹具国外的、国内的区别很大,不同公司间也有大的区别。这主要取决于公司的整体水平,设计人员的经验的积累。国外的夹具,如INSTRON、MTS、ZWICK等公司的夹具一般做工细致,可靠性较高,但价格较高,处在高端市场,而国内的,如SANS的夹具,由于涉足行业广,在国内的市场分额大,在一定程度上可以取代国外的夹具,处在中高端市场,但在一些新材料,特种材料用夹具上国内与国外水平还有一定差距。夹具本身就是一个锁紧机构,我们知道机械上的锁紧结构有:缧纹(即螺纹,螺钉,螺母)、斜面、偏心轮、杠杆等,夹具就是这些结构的组合体。试验机用夹具在结构上没有固定的模式, 根据不同的试样及试验力大小,在结构上差别很大.大试验力的试样一般采用斜面夹紧结构,随试验力的增加,夹紧力随之增加,台肩试样采用悬挂结构等,如果夹具按结构划分,可分为楔形类夹具(指采用斜面锁紧原理结构的夹具)、对夹类夹具(指采用单面或双面螺纹顶紧原理结构的夹具)、缠绕类夹具(指试样通过缠绕方式锁紧的夹具)、偏心类夹具指采用(偏心锁紧原理结构的夹具)、杠杆类夹具(指采用杠杆力放大原理结构的夹具)、台肩类夹具(指适用于台肩试样的夹具)、螺栓类夹具(指适用于螺栓、螺钉、螺柱等测试螺纹强度的夹具)、90°剥离类夹具(指适用于两试样进行垂具,直剥离的夹具)等。这些夹具的结构各有各的优缺点,例如:楔形夹具,初始夹紧力小,随试验力增加。夹紧力随之增加。对夹夹具,初始夹紧力大,随试验力增加。夹紧力随之减小五、夹具适用性的判断标准对夹具适用性的判定很难界定,由于夹具结构的特殊性,对一种夹具,有时我们很难确定它到底更适合那种试样,但不能说没有办法,有以下几点供参考:◆夹具是否使用方便、安全。◆夹持是否可靠,不能有打滑现象。◆做试验过程中,试样断点好。数据离散性小。(即试样不断钳口、钳口内、平行段或标距外)六、夹具现状及发展趋势◆试验机的发展方向是由制样检测向制品(即成品、半成品)检测方向发展,这就要求与之相适应的夹具由原用于标准试样试验的夹具向用于成品检测的夹具发展。◆夹具的使用向高效率,低劳动强度的方向发展,过去的夹具一般采用机械锁紧,费时费力, 劳动强度大,效率低,随着工作环境的改善,及大批量试验生产流水线随机抽检的需要,夹具的夹紧方式由原来的机械夹紧向气压夹紧,液压夹紧等方向发展。◆全自动夹具从试样尺寸测量到装夹,再到开始试验,最后出测试报告一次完成。此类夹具成本很高,仅适用于大批量的相同试样或成品的测试和检验。◆环境试验(高低温试验)的增多, 使用于高低温的夹具增多,环境试验(高低温箱)的增多,给夹具的设计增加了难度,我们知道高温拉伸试验国家标准都有规定,圆试样用螺纹,板试样上有孔。由于连接方式固定,所以夹具的设计较为简单,但高低温试验却不同,它一般是在高低温箱中做试验,它的试样一般标距短(一般为常温试样)。这样一来夹具就必须装在高低温箱内,高低温试验一般由于试验机行程受限制(试验机在装标准夹具时行程)这就要求夹具体积小,又要满足试验力,又要耐高温、低温,一般比较难设计。◆连续试验夹具增多由于过去一般是制样检测,试样的拉伸、压缩是分开进行的(即拉伸、压缩是用不同的夹具进行的),而现在成品检测越来越多,试样在同一次试验中又要受拉伸,又要受压缩,又要有高的效率,只能用同一种夹具即做拉伸又做压缩。◆特殊行业用试验夹具增多随着科学技术的发展,一些新兴的行业对试验用夹具提出了新的要求,例如要求夹具结构小、无磁性,耐腐蚀(在溶液中做试验)等等。七、夹具设计中存在的难点◆钢丝、钢绞线由于试样硬度高,内部结构相对松散,在拉伸试验过程中受力不均匀,夹持试样的钳口易磨损等原因,夹具一直未得到好的解决。◆大试验力、大直径的尼龙绳,由于变形过大,夹持困难,夹具的设计也是一个难点。由于试验机夹具使用的特殊性,以及新材料的不断出现,夹具的设计一直处在被动的局面,我们每天都会碰到新材料,需要设计新的夹具,总结过去成功的经验。
低碳钢拉伸试验
实验原理和步骤
● 原理部分:
低碳钢是工程上最广泛使用的材料,同时,低碳钢试样在拉伸试验中所表现出的变形与抗力间的关系也比较典型。低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。做实验时,可利用万能材料试验机的自动绘图装置绘出低碳钢试样的拉伸图即下图中拉力F与伸长量△L的关系曲线。需要说明的是途中起始阶段呈曲线是由于试样头部在试验机夹具内有轻微滑动及试验机各部分存在间隙造成的。大致可分为四个阶段:
(1)弹性阶段OA:这一阶段试样的变形完全是弹性的,全部卸除荷载后,试样将恢复其原长。此阶段内可以测定材料的弹性模量E。
(2)屈服阶段AS’:试样的伸长量急剧地增加,而万能试验机上的荷载读数却在很小范围内(图中锯齿状线SS’)波动。如果略去这种荷载读数的微小波动不计,这一阶段在拉伸图上可用水平线段来表示。若试样经过抛光,则在试样表面将看到大约与轴线成45°方向的条纹,称为滑移线。
(3)强化阶段S’B 试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断强化,故试样中抗力不断增长。
(4)颈缩阶段和断裂BK 试样伸长到一定程度后,荷载读数反而逐渐降低。此时可以看到试样某一段内横截面面积显著地收缩,出现“颈缩”的现象,一直到试样被拉断。断口呈杯锥状如右图所示
利用原始标距内的残余变形来计算材料断后伸长率A和断面收缩率Z,计算公式为:
式中L0为原始标距长度,S0为原始横截面面积,Lu为试样断裂后标距长度,Su为试样断裂后颈缩处最小横截面面积。
图2-4 低碳钢拉伸图
● 步骤:
1在试样的原始标距长度L0范围内,用试样划线器细划等分10个分格线
2.根据GB/T 228—2002《金属材料室温拉伸试验方法》中第7章的规定,测定试样原始横截面面积。本次实验采用圆形截面试样,应在标距的两端及中间处的两个相互垂直的方向上各测一次横截面直径d,取其算术平均值,选用三处中平均直径最小值,并以此值计算横截面面积S0,其S0 =πd2/4。该计算值修约到四位有效数字(π取五位有效数字)。
3.打开试验机,安装试样,可快速调节试验机的夹头位置,将试样先夹持在上夹头中,再升起下夹头,将试样夹牢并使之铅直;
4.在计算机上输入已测平均直径中最小值等参数,并勾选所需测定的参数FeH值、下屈服点力FeL值和最大力Fm值,上屈服强度Reh,下屈服强度Rel抗拉强度Rm。将进油阀关闭,按试验机上启动键。同时,操作计算机软件使之开始绘制曲线图。
5..在加载实验过程中,总的要求应是缓慢、均匀、连续地进行加载。并采用位移控制速率0.009mm/s。开始测定时至达到屈服强度阶段,试样平行长度的控制速率为0.009mm/S。达到强化阶段后可适当增大速率至0.015mm/s。试样拉断后立即停机并先取下试样,然后打开回油阀,使工作平台复位。
5.在实验中,注意观察拉伸过程四个特征阶段中的各种现象,记录的上屈服点力FeH值、下屈服点力FeL值和最大力Fm值,上屈服强度Reh,下屈服强度Rel抗拉强度Rm
考虑软件识别问题,手动定位并设置下屈服点。
6.将断后试样拼接并用游标卡尺测断后标距Lu,和拉断处最小断面的直径du。
西安博汇试验机