知识点:《七桥问题》 收集:邢涟捌 编辑:杜鹃花妹子
本知识点包括:1、七桥问题 的答案是什么??? 2、七桥问题的答案 3、七桥问题答案示意图 4、七桥问题有解决吗 5、哥尼斯堡七桥问题最后是被谁解决的 。
《七桥问题》相关知识
七桥问题Seven Bridges Problem
著名古典数学问题之一.在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图).问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的.
有关图论研究的热点问题.18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来.当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥.这就是柯尼斯堡七桥问题.L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题.他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2.
当Euler在1736年访问Konigsberg,Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动.Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点.
Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示.
后来推论出此种走法是不可能的.他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点.所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数.
七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.
欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”.这种研究方法就是“数学模型方法”.这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键.
接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的.也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在.一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!
1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法.他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础.
七桥问题和欧拉定理.欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理.对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路.人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路.具有欧拉回路的图叫做欧拉图.
此题被人教版小学数学第十二册书收录.在95页.
知识拓展:
1:七桥问题的答案
知识要点归纳:
七桥连线
这个问题看似简单,然而许多人作过尝试始终没有能找到答案.因此,一群大学生就写信给当时年仅20岁的大数学家欧拉,请他分析一下.欧拉从千百人次的失败中,以深邃的洞察力猜想,也许根本不可能不重复地一次走遍这七座桥.为了证明这种猜想是正确的,欧拉用简单的几何图形来表示陆地和桥.他是这样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成A、B、C、D 4个点,7座桥表示成7条连接这4个点的线,如图“七桥连线”所示.
七桥连线简化图
再把它简化成图形,就成了右图“七桥连线简化图”.
在说欧拉的推论前,我们先说说偶点和奇点的问题.
奇偶数点图
什么是偶点呢?一个点如果有偶数条边,它就是偶点.如下面“奇偶数点图”的A、B、E、F点.反之,如果一个点有奇条边数,它就是奇点.如图中的C、D这两点.
偶点和奇点与能不能一次通过这座桥有关系吗?别急,我们慢慢来说.
欧拉认为,如果一个图能一笔画成,那么一定有一个起点开始画,也有一个终点.图上其它的点是“过路点”——画的时候要经过它.
“过路点”有什么特点呢?它应该是“有进有出”的点,有一条边进这点,那么就要有一条边出这点,不可能是有进无出或有出无进.如果只进无出,它就是终点;如果有出无进,它就是起点.因此,在“过路点”进出的边总数应该是偶数,即“过路点”是偶点.
如果起点和终点是同一点,那么它也是属于“有进有出”的点,因此必须是偶点,这样图上全体点都是偶点.
如果起点和终点不是同一点,那么它们必须是奇点,因此这个图最多只能有二个奇点.
把上面所说的归纳起来,说简单点就是:
能一笔画的图形只有两类:一类是所有的点都是偶点.另一类是只有二个奇点的图形.
现在对照七桥问题的图,我们回过头来看看图3,A、B、C、D四点都连着三条边,是奇数边,并且共有四个,所以这个图肯定不能一笔画成.
欧拉对“七桥问题”的研究是图论研究的开始,同时也为拓扑学的研究提供了一个初等的例子.
事实上,中国民间很早就流传着这种一笔画的游戏,从长期实践的经验,人们知道如果图的点全部是偶点,可以任意选择一个点做起点,一笔画成.如果是有二个奇点的图形,那么就选一个奇点做起点以顺利的一笔画完.要是不信的话,你可以试试上图“奇偶数点图”,选择C、D两个奇点来画,肯定能一笔画成.只是很可惜,长期以来,人们只把它作为一类有趣的游戏,没有对它引起重视,也没有数学家对它进行经验总结和研究,这不能不说是一种遗憾.
2:人教版,95页,是不是不可能每个只走一次?要怎么走?
知识要点归纳:
七桥问题Seven Bridges Problem
著名古典数学问题之一.在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图).问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的.
有关图论研究的热点问题.18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来.当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥.这就是柯尼斯堡七桥问题.L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题.他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2.
当Euler在1736年访问Konigsberg,Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动.Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点.
Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示.
后来推论出此种走法是不可能的.他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点.所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数.
七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.
欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”.这种研究方法就是“数学模型方法”.这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键.
接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的.也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在.一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!
1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法.他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础.
七桥问题和欧拉定理.欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理.对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路.人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路.具有欧拉回路的图叫做欧拉图.
此题被人教版小学数学第十二册书收录.在95页.
3:告我怎么走就行急
知识要点归纳:
要一次不重复走遍哥尼斯堡的7座桥是不可能的
七桥问题 七桥问题Seven Bridges Problem
著名古典数学问题之一.在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图).问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的.
有关图论研究的热点问题.18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来.当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥.这就是柯尼斯堡七桥问题.L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题.他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2.
当Euler在1736年访问Konigsberg,Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动.Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点.
Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示.
后来推论出此种走法是不可能的.他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点.所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数.
七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.
欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”.这种研究方法就是“数学模型方法”.这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键.
接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的.也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在.一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!
1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法.他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础.
七桥问题和欧拉定理.欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理.对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路.人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路.具有欧拉回路的图叫做欧拉图.
此题被人教版小学数学第十二册书收录.在95页.
此题也被人教版初中第一册收录.在一百二十一页.
4:那个,我有一个六年级同学,在课本上看到了七桥问题,她想了一会就做出来了,(具体怎么做我忘了)我看过之后,觉得没做错,符合题目的要求,
知识要点归纳:
不可能的.
把桥当成线,岛当成面,简化成一个4个点7条线的图,并且4个点都为奇点(关联的线的条数为奇数).而一个连通图能一笔画成,奇点数必须为0或2(这点容易想通,若奇点数为0,所有点都为偶点,则可以以任意点为起点.而有奇点的话,若该点第一条线是从它出去的,则最后一条也是从它出去,第一条是进入它的,则最后一点也是进入它的.所以奇点必定为起点或终点.还有,连通图的奇点个数为偶数,所以不可能只有1个奇点).从这个结论来说的话,七桥问题作的图奇点数为4,故不存在不重复的走法.
5:一笔画图哦
知识要点归纳:
我们早就学过了,不可能的,要不就多一笔,要不就少一笔.
那是几何问题,我走了一天晚上都没有走出来,还哭了呢,那是走不出来的!别废脑细胞了.
猜你喜欢:
1:七桥问题 的答案是什么???
提示:答案是无解的,你要记住,七桥问题即:能否笔不离纸,不重复地一笔画完整个图形。“一笔画”问题,数学分析:一笔画有起点和终点,起点和终点重合的图形称为封闭图形,否则便称为开放图形。除起点和终点外,一笔画中间可能出现一些曲线的交点。只...
2:七桥问题的答案
提示:这个问题没有答案。 除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接...
3:七桥问题答案示意图
提示:七桥问题Seven Bridges Problem 著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题...
4:七桥问题有解决吗
提示:没有。因为除了起点和终点之外,我们把其余的点称为中间点。如果一个图可以一笔画的话,对于每一个中间点来说,当画笔沿某条线到达这一点时,必定要沿另一条线离开这点,并且进入这点几次,就要离开这点几次,一进一出,两两配对,所以从这点发...
5:哥尼斯堡七桥问题最后是被谁解决的
提示:七桥问题也困绕着哥尼斯堡大学的学生们,在屡遭失败之后,他们给当时著名数学家欧 拉写了一封信,请他帮助解决这个问题。 欧拉看完信后,对这个问题也产生了浓厚的兴趣。他想,既然岛和半岛是桥梁的连接地 点,两岸陆地也是桥梁的连接地点,那就...