uwb定位技术怎么样?是化工厂人员定位是否适用?
UWB(Ultra Wideband)是一种无载波通信技术,利用纳秒至微秒级的非正弦波窄脉冲传输数据,通常利用TDoA(到达时间差)和ToF(时间到达)算法实现人员或物品位置的信息。此外,对所需定位的物品或人员UWB技术需要铺设基站和佩戴定位标签。UWB信号的辐射非常低,通常只有手机辐射的千分之一,因此在化工厂人员定位应用时,其不存在对其他仪器仪表的干扰问题。由于考虑到化工厂人员应用的严谨性,无论是从定位精度、安全性、抗干扰、功耗等角度来分析,UWB无疑是最理想的化工厂人员定位技术之一。
UWB定位如何解决化工厂人员定位的应用需求?
UWB超宽带定位流程(1)每个定位标签以UWB脉冲重复不间断发送数据帧;(2)定位标签发送的UWB脉冲串被定位基站接收;(3)每个定位基站利用高敏度的短脉冲侦测器测量每个定位标签的数据帧到达接收器天线的时间;(4)定位引擎参考标签发送过来的校准数据,确定标签达到不同定位基站之间的时间差,并利用三点定位技术及优化算法来计算标签位置。(5)采用多基站定位多采用TDOA(Time difference of Arrival)算法。可以实现以下功能:牵星定位管理系统实时位置显示与监控:跟踪单人运动轨迹;统计列表查找/筛选人员位置信息;系统管理:地图支持,实时监测基站工作状态,配置各项功能参数;电子围栏:绘制多边形的围栏;对接权限,进入+停留+离开三种条件组成灵活围栏规则;智能考勤:自定义绘制考勤区域,设定部门考勤班次;自动判断迟到、早退,自动生成考勤报表;记录上下班时间和在岗时间;组织架构与人员管理;组织架构自定义,部门层级轻松管理,低电量提醒,寻呼/SOS记录轨迹回放:按照人员、时间段、区域灵活筛选回放;智能筛选去除无定位数据的时间段;多目标多倍速回放历史轨迹;视频联动:支持全球六大安防品牌摄像头接入系统;360°旋转,多角度查看现场画面违规行为自动保存;多目标视频跟踪,自动切换摄像头跟踪目标;自动巡检:巡检区域自动报修;通过精确定位、人脸识别,解决人员现场到位问题杜绝漏检、假资料;进程状态可视化,落实可视化闭环管理;呼叫求救:员工遇到紧急情况发生时,可以长按标签中的“呼救”按键,及时发送求救信号,管理软件接收到求救信号后会弹出窗口提示监管人员及时进行处理;当工厂内发生灾情或其他异常情况时,监管人员在软件实时监控界面点击撤离指令后,通过鼠标选定需要撤离的区域,软件后台会向在该区域内的员工发送撤离指令,区域内员工携带的标签收到撤离指令后,通过声光报警提示人员紧急撤离危险区域。
高精度室内定位技术有哪些?
UWB室内定位系统与传统的窄带系统相比,具有穿透力强、功耗低、抗多径效果好、安全性高、系统复杂度低、能提供精确定位精度等优点。因此,UWB室内定位技术可以应用于室内静止或者移动物体以及人的定位跟踪与导航,且能提供十分精确的定位精度。例如专注室内定位方案的95POWER(SKYLAB子公司),其自主研发生产的UWB室内定位系统可以达到优于10cm的定位精度。2.UWB室内定位原理:跟蓝牙和WIFI定位方法不同,UWB室内定位技术位置信息并不是基于信号强度(RSSI)进行计算,而是通过精确无线信号的发送时刻、接收时刻,并通过算法计算的。UWB无线定位系统要实现精确定位,首先要获取与位置相关的变量信息,建立相应的数学模型,然后根据这些变量和参数以及数学模型来解算目标的坐标。UWB室内定位技术具有超高的时间分辨率,保证了UWB可以准确地获得待定位目标的时间和角度信息,信号飞行的速度是光速(固定值),所以只要知道飞行时间就可以计算出两个设备的距离,结合角度信息利用三角定位等几何定位方法求得待定位目标的位置信息。在UWB室内定位技术中应用最广泛的是飞行时间测距法(TOF)和到达时间差法(TDOA)。从定位方式来看均属于多点定位,即确定标签与多个已知坐标点的相对位置关系定位。
室内定位精度能做到多少?
UWB定位技术是一款无线载波通讯技术,能实现室内等密集场所的高速无径接入。根据美国联邦委员会的规划,UWB的工作频带3.1~10.6GHz。是一种传输速率最高可达1000Mbps以上,超宽带系统与传统的窄带系统相比,具有穿透力强、功耗低、抗多径效果好、安全性高、系统复杂度低等优点。最重要的是由于物理特性的不同,UWB定位天生被定义为实时、精准、超高定位精度,定位精度可以达到10cm级。 室内定位精度所以综合比较,众多室内定位技术中UWB定位技术是定位精度最高的。不仅如此,从大容量、抗遮挡、低延迟、高刷新率、低功耗等几个维度的性能指标对比,发现目前的室内定位技术中UWB技术各方面居于领先,能够得出更优化的行业应用方案。当然,UWB技术基本性能虽然优越,但事实上,具体到应用,需要进行多项技术优化,包括底层定位数据清洗、定位引擎算法优化、同步技术优化处理等,所以可以发现同样是UWB,根据不同公司使用的技术手段或算法不同,其性能会差别很大。
哪种室内定位技术精度高,有没有高精度室内定位解决方案?
室内定位的应用技术分析,室内定位无线方案比较!Wi-Fi定位、蓝牙定位、RFID定位、UWB(超宽带)室内定位、红外技术、超声波等技术纷纷进入市场,为不同行业的室内定位需求贡献了诸多行之有效的位置服务方案。各种室内定位技术各有优劣,在不同应用场景、不同预算要求下,也可将不同的原理组合使用。主流技术有以下几种:WiFi定位技术目前WiFi是相对成熟且应用较多的技术,这几年有不少公司投入到了这个领域。WiFi室内定位技术主要有两种。一种是通过移动设备和三个无线网络接入点的无线信号强度,通过差分算法,来比较精准地对人和车辆的进行三角定位。另一种是事先记录巨量的确定位置点的信号强度,通过用新加入的设备的信号强度对比拥有巨量数据的数据库,来确定位置(“指纹”定位)。WiFi定位可以实现复杂的大范围定位,但精度只能达到2米左右,无法做到精准定位。因此适用于对人或者车的定位导航,可以于医疗机构、主题公园、工厂、商场等各种需要室内定位导航的场合。蓝牙技术蓝牙信标技术目前部署的也比较多,也是相对比较成熟的技术。蓝牙跟WiFi的区别不是太大,精度会比WiFi稍微高一点。蓝牙室内定位技术的代表是Nokia,推出了HAIP的室内精确定位解决方案,采用基于蓝牙的三角定位技术,除了使用手机的蓝牙模块外,还需部署蓝牙基站,最高可以达到亚米级定位精度。蓝牙室内定位技术最大的优点是设备体积小、短距离、低功耗,容易集成在手机等移动设备中。只要设备的蓝牙功能开启,就能够对其进行定位。蓝牙传输不受视距的影响,但对于复杂的空间环境,蓝牙系统的稳定性稍差,受噪声信号干扰大且在于蓝牙器件和设备的价格比较昂贵。超宽带UWB室内定位技术超宽带(UWB)室内定位技术利用事先布置好的已知位置的锚节点和桥节点,与新加入的盲节点进行通讯,并利用三角定位或者“指纹”定位方式来确定位置。超宽带室内定位的定位方案采用UWB(超宽带)脉冲信号,由多个传感器采用TDOA和AOA定位算法对标签位置进行分析,多径分辨能力强、精度高,定位精度可达亚米级。超宽带通信不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或纳秒级以下的极窄脉冲来传输数据,因此具有GHz量级的带宽。由于超宽带定位技术具有穿透力强、抗多径效果好、安全性高、系统复杂度低、能提供精确定位精度等优点,前景相当广阔。之前的技术研究中,由于新加入的盲节点也需要主动通信使得功耗较高,而且事先也需要布局,使得成本还无法降低。但是在恒高科技的产品设计之中,定位基站使用电池供电,满足续航时间大于1年。且基站通过无线与通信基站传输数据,不需要铺设线缆,既节省了安装的硬件成本,又节省安装的时间成本。不仅如此,日常运行成本,受台风、暴雨等影响时的恢复成本都会加到产品售出时的价格之上。对此,恒高科技形成了一套自组网、自维护的产品设计,有效的将维护费用降低,优化投入成本。从技术上看,无论是从定位精度、安全性、抗干扰、功耗等角度来分析,UWB无疑是最理想的工业定位技术之一。 RFID技术RFID室内定位的基本原理是,通过一组固定的阅读器读取目标RFID标签的特征信息(如身份ID、接收信号强度等),同样可以采用近邻法、多边定位法、接收信号强度等方法确定标签所在位置。射频识别室内定位技术作用距离很近,但它可以在几毫秒内得到厘米级定位精度的信息,且由于电磁场非视距等优点,传输范围很大,而且标识的体积比较小,造价比较低。但其不具有通信能力,抗干扰能力较差,不便于整合到其他系统之中,且用户的安全隐私保障和国际标准化都不够完善。目前有大量成熟的商用定位方案基于RFID技术,广泛应用于紧急救援、资产管理、人员追踪等领域。红外室内定位技术红外线室内定位有两种,第一种是被定位目标使用红外线IR标识作为移动点,发射调制的红外射线,通过安装在室内的光学传感器接收进行定位;第二种是通过多对发射器和接收器织红外线网覆盖待测空间,直接对运动目标进行定位。红外线的技术已经非常成熟,用于室内定位精度相对较高,但是由于红外线只能视距传播,穿透性极差(可以参考家里的电视遥控器),当标识被遮挡时就无法正常工作,也极易受灯光、烟雾等环境因素影响明显。加上红外线的传输距离不长,使其在布局上,无论哪种方式,都需要在每个遮挡背后、甚至转角都安装接收端,布局复杂,使得成本提升,而定位效果有限。该技术目前主要用于军事上对飞行器、坦克、导弹等红外辐射源的被动定位,此外也用于室内自走机器人的位置定位。超声波室内定位技术超声波室内定位主要采用反射式测距法,通过多边定位等方法确定物体位置,系统由一个主测距器和若干接收器组成,主测距仪可放置在待测目标上,接收器固定于室内环境中。定位时,向接收器发射同频率的信号,接收器接收后又反射传输给主测距器,根据回波和发射波的时间差计算出距离,从而确定位置。超声波定位整体定位精度较高,结构简单,但超声波受多径效应和非视距传播影响很大,且超声波频率受多普勒效应和温度影响,同时也需要大量基础硬件设施,成本较高。