透射电子显微镜的原理
透射电子显微镜的原理:是由电子枪发射出来的电子束,在真空通道中沿着镜体光轴穿越聚光镜。透射电子显微镜,可以看到在光学显微镜下无法看清的小于0.2um的细微结构,这些结构称为亚显微结构或超微结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。TEM的分辨力可达0.2nm。电子显微镜与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。这种切片需要用超薄切片机(ultramicrotome)制作。电子显微镜的放大倍数最高可达近百万倍、由照明系统、成像系统、真空系统、记录系统、电源系统5部分构成,如果细分的话:主体部分是电子透镜和显像记录系统,由置于真空中的电子枪、聚光镜、物样室、 物镜、衍射镜、中间镜、 投影镜、荧光屏和照相机。结构原理:在真空通道中沿着镜体光轴穿越聚光镜,通过聚光镜将之会聚成一束尖细、明亮而又均匀的光斑,照射在样品室内的样品上;透过样品后的电子束携带有样品内部的结构信息,样品内致密处透过的电子量少,稀疏处透过的电子量多。经过物镜的会聚调焦和初级放大后,电子束进入下级的中间透镜和第1、第2投影镜进行综合放大成像,最终被放大了的电子影像投射在观察室内的荧光屏板上;荧光屏将电子影像转化为可见光影像以供使用者观察。本节将分别对各系统中的主要结构和原理予以介绍。
电子显微镜原理
电子显微镜原理如下;一、透射电子显微镜透射电镜即透射电子显微镜通常称作电子显微镜或电镜,是使用最为广泛的一类电镜。1、工作原理:在真空条件下,电子束经高压加速后,穿透样品时形成散射电子和透射电子,它们在电磁透镜的作用下在荧光屏上成像。电子束投射到样品时,可随组织构成成分的密度不同而发生相应的电子发射,如电子束投射到质量大的结构时,电子被散射的多,因此投射到荧光屏上的电子少而呈暗像,电子照片上则呈黑色。2、主要优点:分辨率高,可用来观察组织和细胞内部的超微结构以及微生物和生物大分子的全貌。 二、扫描电镜扫描电镜即扫描电子显微镜,主要用于观察样品的表面形貌、割裂面结构、管腔内表面的结构等。1、工作原理:扫描电镜是利用二次电子信号成像来观察样品的表面形态。用极细的电子束在样品表面扫描,激发样品表面放出二次电子,将产生的二次电子用特制的探测器收集,形成电信号运送到显像管,在荧光屏上显示物体。(细胞、组织)表面的立体构像,可摄制成照片。2、主要优点:景深长,所获得的图像立体感强,可用来观察生物样品的各种形貌特征。
透射电镜的成像原理
透射电镜,即透射电子显微镜是电子显微镜的一种。电子显微镜是一种高精密度的电子光学仪器,它具有较高分辨本领和放大倍数,是观察和研究物质微观结构的重要工具。电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。现在电子显微镜最大放大倍率超过300万倍,而光学显微镜的最大放大倍率约为2000倍,所以通过电子显微镜就能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵。1931年,德国的克诺尔和鲁斯卡,用冷阴极放电电子源和三个电子透镜改装了一台高压示波器,并获得了放大十几倍的图象,证实了电子显微镜放大成像的可能性。1932年,经过鲁斯卡的改进,电子显微镜的分辨能力达到了50纳米,约为当时光学显微镜分辨本领的十倍,于是电子显微镜开始受到人们的重视。到了二十世纪40年代,美国的希尔用消像散器补偿电子透镜的旋转不对称性,使电子显微镜的分辨本领有了新的突破,逐步达到了现代水平。在中国,1958年研制成功透射式电子显微镜,其分辨本领为3纳米,1979年又制成分辨本领为0.3纳米的大型电子显微镜。电子显微镜的分辨本领虽已远胜于光学显微镜,但电子显微镜因需在真空条件下工作,所以很难观察活的生物,而且电子束的照射也会使生物样品受到辐照损伤。其他的问题,如电子枪亮度和电子透镜质量的提高等问题也有待继续研究。透射电镜的成象原理是由照明部分提供的有一定孔径角和强度的电子束平行地投影到处于物镜物平面处的样品上,通过样品和物镜的电子束在物镜后焦面上形成衍射振幅极大值,即第一幅衍射谱。这些衍射束在物镜的象平面上相互干涉形成第一幅反映试样为微区特征的电子图象。通过聚焦(调节物镜激磁电流),使物镜的象平面与中间镜的物平面相一致,中间镜的象平面与投影镜的物平面相一致,投影镜的象平面与荧光屏相一致,这样在荧光屏上就察观到一幅经物镜、中间镜和投影镜放大后有一定衬度和放大倍数的电子图象。由于试样各微区的厚度、原子序数、晶体结构或晶体取向不同,通过试样和物镜的电子束强度产生差异,因而在荧光屏上显现出由暗亮差别所反映出的试样微区特征的显微电子图象。电子图象的放大倍数为物镜、中间镜和投影镜的放大倍数之乘
透射电镜的原理
在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构或超微结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。
透射式电子显微镜(TEM)与投射式光学显微镜的原理很相近,图4-12所绘为两者的简化光路图,从图中可以看出,它们的光源、透镜虽不相同,但照放大和成像的方式却完全一致。
在实际情况下无论是光镜还是电镜,其内部结构都要比图示复杂得多,图中的聚光镜(condonser lens)、物镜(object lens)和投影镜(projection lens)为光路中的主要透镜,实际制作中它们往往各是一组(多块透镜构成),在设计电镜时为达到所需的放大率、减少畸变和降低像差,又常在投影镜之上增加一至两级中间镜(intemediate lens)。透射式电子显微镜的总体结构包括镜体和辅助系统两大部分,镜体部分包含:①照明系统(电子枪G,聚光镜C1、C2),②成像系统(样品室,物镜O,中间镜I1、I2,投影 镜P1、P2),③观察记录系统(观察室、照相室),④调校系统(消像散器、束取向调 整器、光阑)。辅助系统包含:①真空系统(机械泵、扩散泵、真空阀、真空规),②电路系统(电源变换、调整控制),③水冷系统。图4-13(a)为典型透射电镜的电子光学系统 构成及成像原理示意图,其中只包含了电镜镜体内的照明系统和成像系统两部分;图4-13(b)为透射电镜的镜体外形结构对照示意图。
透射电镜的总体工作原理是:由电子枪发射出来的电子束,在真空通道中沿着镜体光轴穿越聚光镜,通过聚光镜将之会聚成一束尖细、明亮而又均匀的光斑,照射在样品室内的样品上;透过样品后的电子束携带有样品内部的结构信息,样品内致密处透过的电子量少,稀疏处透过的电子量多;经过物镜的会聚调焦和初级放大后,电子束进入下级的中间透镜和第1、第2投影镜进行综合放大成像,最终被放大了的电子影像投射在观察室内的荧光屏板上;荧光屏将电子影像转化为可见光影像以供使用者观察。本节将分别对各系统中的主要结构和原理予以介绍。