轴类锻件在锻造工艺中的一些主要问题?
1.加热工艺
大型钢锭脱模后最好热锭装炉,因为这种内部缺陷很多的钢锭,如果冷却到室温时,由于热应力和组织应力的作用,将导致内部缺陷扩大甚至钢锭断裂。
锻造加热工艺的主要参数是加热温度和保温时间。
为了使毛坯获得锻造所需的塑性,必须将其在1150-1270℃的高温下加热和保温,保温的目的是使钢锭中心也达到锻造温度,并使各部分温度均匀。
我国工厂锻件的锻造温度和保温时间在锻造手册中可以査到。加热温度的选择主要决定于钢的化学成份,也与锻造工艺有关。一般手册上列举的锻造加热温度是对通常的锻比不小于1.5的工艺而言,如果锻比小于1.5则应该降低加热温度,例如对普通钢号来说,当锻比为1.5-1.3时,加热温度为1050℃。而锻比小于1.3或局部无锻比时,则为950℃。
2.锻比
锻造工艺中钢锭的塑性变形不但是成形的必要前提,而且也是破坏锻造组织、锻合内部缺陷,使组织均匀化的必要条件。塑性变形不同,锻合的效果也就不一样。锻比就是衡量锻造轴塑性变形程度的指标。
既然锻比是衡量塑性变形程度的指标,而变形程度直接影响对钢锭内部组织的锻合效果,从而也影响锻造轴的机械性能,所以锻比与锻造轴内部组织和机械性能之间存在着密切关系。
3.锻透及其影响参数
上面我们提到的锻比是对整个锻造轴来说的,是指锻件的总锻比。实际上,锻件塑性变形时,截面上各处的变形程度远远不是均匀的,也就是说,截面各处的局部锻比远远不是相等的。山西中信重工专业加工各种材质锻件。总锻比只是整个截面各处局部锻比的平均值。
4.中间镦粗
为了增加锻造比,使缺陷很好锻合,我国及国外很多工厂对横向性能要求较高的重要锻件采用一次或两次中间镦粗的拔长工艺,以期使用直径较小的钢锭,达到较大的总锻比而不致使横向性能降低过多,并保证锻件心部的缺陷很好的锻合。
5.终锻温度
目前,普通碳钢和低合金钢的锻件终锻温度一般为750-800℃。但是,存在尽可能降低终锻温度的趋势。当锻件表面温度为700-750℃时,心部温度仍然有1050-1200℃左右,显然,只要不使表面锻裂,降低终锻温度,将使心部获得较大的变形程度。
降低终锻温度的结果,再加上采用省去中间镦粗的直接锻造法,可以大大减少火次。
6.降温锻造法(中心压实法)
实验研究和长期生产实践表明,用普通自由锻造法,只能保证钢锭偏析区的疏松、气孔等缺陷锻合,而过渡偏析区和偏析区的缺陷往往只能部分得到锻合。为了使日益增大的大型钢锭能够锻透,必须保证足够大的锻比和使用吨位足够大的压机,因而越来越困难。
近来,又发展了所谓脱模直接锻造法。即当钢锭在锭模中冷却到表面达到终锻温度(750℃)后,即将钢锭脱模,并送至水压机上,进行降温锻造。锻后在V形砧上进行,由中心向端部逐步锻造,在全长上每完成一个工步以后,将锻件翻转90°,总变形程度为6-8%。这种方法已开始在生产中使用,其特点是进一步节省了锻造工时,而又保持了降温锻造的优点。
轴类锻件加工工艺
轴类锻件一般如果较大的轴的话采用自由锻,自由锻里面就有一类是轴类锻件,如果你有兴趣过来看看,浙江一重特钢有限公司我们主要生产自由锻锻件和锻造圆钢,其中有一类就是轴类锻件。 第一节 轴类零件加工
一、 概述
(一)、轴类零件的功用与结构特点
1、功用:为支承传动零件(齿轮、皮带轮等)、传动扭矩、承受载荷,以及保证装在主轴上的工件或刀具具有一定的回转精度。
2、 分类:轴类零件按其结构形状的特点,可分为光轴、阶梯轴、空心轴和异形轴(包括曲轴、凸轮轴和偏心轴等)四类。
图 轴的种类
a)光轴 b)空心轴 c)半轴 d)阶梯轴 e)花键轴 f)十字轴 g)偏心轴
h)曲轴 i) 凸 轮轴
若按轴的长度和直径的比例来分,又可分为刚性轴(L/d<12=和挠性轴(L/d>12)两类。
3、表面特点:外圆、内孔、圆锥、螺纹、花键、横向孔
(二)主要技术要求:
1、尺寸精度
轴颈是轴类零件的主要表面,它影响轴的回转精度及工作状态。轴颈的直径精度根据其使用要求通常为IT6~9,精密轴颈可达IT5。
2、几何形状精度
轴颈的几何形状精度(圆度、圆柱度),一般应限制在直径公差点范围内。对几何形状精度要求较高时,可在零件图上另行规定其允许的公差。
3、位置精度
主要是指装配传动件的配合轴颈相对于装配轴承的支承轴颈的同轴度,通常是用配合轴颈对支承轴颈的径向圆跳动来表示的;根据使用要求,规定高精度轴为0.001~0.005mm,而一般精度轴为0.01~0.03mm。
此外还有内外圆柱面的同轴度和轴向定位端面与轴心线的垂直度要求等。
4.表面粗糙度
根据零件的表面工作部位的不同,可有不同的表面粗糙度值,例如普通机床主轴支承轴颈的表面粗糙度为Ra0.16~0.63um,配合轴颈的表面粗糙度为Ra0.63~2.5um,随着机器运转速度的增大和精密程度的提高,轴类零件表面粗糙度值要求也将越来越小。
(三)、轴类零件的材料和毛坯
合理选用材料和规定热处理的技术要求,对提高轴类零件的强度和使用寿命有重要意义,同时,对轴的加工过程有极大的影响。
1、轴类零件的材料
一般轴类零件常用45钢,根据不同的工作条件采用不同的热处理规范(如正火、调质、淬火等),以获得一定的强度、韧性和耐磨性。
对中等精度而转速较高的轴类零件,可选用40Cr等合金钢。这类钢经调质和表面淬火处理后,具有较高的综合力学件能。精度较高的轴,有时还用轴承钢GCrls和弹簧钢65Mn等材料,它们通过调质和表面淬火处理后,具有更高耐磨性和耐疲劳性能。
对于高转速、重载荷等条件下工作的轴,可选用20CrMnTi、20MnZB、20Cr等低碳含金钢或38CrMoAIA氮化钢。低碳合金钢经渗碳淬火处理后,具有很高的表面硬度、抗冲击韧性和心部强度,热处理变形却很小。
2、轴类零件的毛坯
轴类零件的毛坯最常用的是圆棒料和锻件,只有某些大型的、结构复杂的轴才采用铸件。
(四)、轴类零件的预加工
轮类零件在切削加工之前,应对其毛坯进行预加工。预加工包括校正、切断和切端面和钻中心孔。
1、校正:校正棒料毛坯在制造、运输和保管过程中产生的弯曲变形,以保证加工余量均匀及送料装夹的可靠。校正可在各种压力机上进行。
2、切断:当采用棒料毛坯时,应在车削外圆前按所需长度切断。切断叮在弓锯床上进行,高硬度棒料的切断可在带有薄片砂轮的切割机上进行。
3、切端面钻中心孔:中心孔是轴类零件加工最常用的定位基准面,为保证钻出的中心孔不偏斜,应先切端面后再钻中心孔。
4、荒车:如果轴的毛坯是向由锻件或大型铸件,则需要进行荒车加工,以减少毛坯外国表面的形状误差,使后续工序的加工余景均匀。
二、 典型主轴类零件加工工艺分析
轴类零件的加工工艺因其用途、结构形状、技术要求、产量大小的不同而有差异。而轴的工艺规程编制是生产中最常遇到的工艺工作。
(一)轴类零件加工的主要问题
轴类零件加工的主要问题是如何保证各加工表面的尺寸精度、表面粗糙度和主要表面之间的相互位置精度。
轴类零件加工的典型工艺路线如下:
毛坯及其热处理→预加工→车削外圆→铣键槽等→热处理→磨削
(二)CA6140主轴加工工艺分析
1、CA6140主轴技术条件的分析
(1)、支承轴颈的技术要求
主轴两支承轴颈A、B的圆度允差 0.005毫米,径向跳动允差 0.005毫米,两支承轴颈的1:12锥面接触率>70%,表面粗糙度Ra0.4um。支承轴颈直径按IT5-7级精度制造。
主轴外圆的圆度要求,对于一般精度的机床,其允差通常不超过尺寸公差的50%,对于提高精度的机床,则不超过25%,对于高精度的机床,则应在 5~10%之间。
(2)、锥孔的技术要求
主轴锥孔(莫氏 6号)对支承轴颈 A、B的跳动,近轴端允差 0.005mm,离轴端300mm处允差 0.01毫米,锥面的接触率 >70%,表面粗糙度Ra0.4um,硬度要求 HRC48。
(3)、短锥的技术要求
短锥对主轴支承轴颈A、B的径向跳动允差0.008mm,端面D对轴颈A、B的端面跳动允差0.008mm,锥面及端面的粗糙度均为Ra0.8um。
(4)、空套齿轮轴颈的技术要求
空套齿轮的轴颈对支承轴颈A、B的径向跳动允差为 0.015毫米。
(5)、螺纹的技术要求
这是用于限制与之配合的压紧螺母的端面跳动量所必须的要求。因此在加工主轴螺纹时,必须控制螺纹表面轴心线与支承轴颈轴心线的同轴度,一般规定不超过0.025mm。
从上述分析可以看出,主轴的主要加工表面是两个支承轴颈、锥孔、前端短锥面及其端面、以及装齿轮的各个轴颈等。而保证支承轴颈本身的尺寸精度、几何形状精度、两个支承轴颈之间的同轴度、支承轴颈与其它表面的相互位置精度和表面粗糙度,则是主轴加工的关键。
(三)、CA6140主轴加工工艺过程四)、主轴加工工艺过程分析
1、 主轴毛坯的制造方法及热处理
批量:大批;材料:45钢;毛坯:模锻件
(1)材料
在单件小批生产中,轴类零件的毛坯往往使用热轧棒料。
对于直径差较大的阶梯轴,为了节约材料和减少机械加工的劳动量,则往往采用锻件。单件小批生产的阶梯轴一般采用自由锻,在大批大量生产时则采用模锻。
(2)热处理
45钢,在调质处理(235HBS)之后,再经局部高频淬火,可以使局部硬度达到HRC62~65,再经过适当的回火处理,可以降到需要的硬度(例如 CA6140主轴规定为 HRC52)。
9Mn2V,这是一种含碳0.9%左右的锰钒合金工具钢,淬透性、机械强度和硬度均比45钢为优。经过适当的热处理之后,适用于高精度机床主轴的尺寸精度稳定性的要求。例如,万能外圆磨床 M1432A头架和砂轮主轴就采用这种材料。
38CrMoAl,这是一种中碳合金氮化钢,由于氮化温度比一般淬火温度为低540—550℃,变形更小,硬度也很高(HRC>65,中心硬度HRC>28)并有优良的耐疲劳性能,故高精度半自动外圆磨床MBG1432的头架轴和砂轮轴均采用这种钢材。
此外,对于中等精度而转速较高的轴类零件,多选用40Cr等合金结构钢,这类钢经调质和高频淬火后,具有较高的综合机械性能,能满足使用要求。有的轴件也选用滚珠轴承钢如 GCr15和弹簧钢如 66Mn等材料.这些钢材经调质和表面淬火后,具有极高的耐磨性和耐疲劳性能。当要求在高速和重载条件下工作的轴类零件,可选用18CrMnTi、20Mn2B等低碳含金钢,这些钢料经渗碳淬火后具有较高的表面硬度、冲击韧性和心部强度,但热处理所引起的变形比38CrMoAl为大。
凡要求局部高频淬火的主轴,要在前道工序中安排调质处理(有的钢材则用正火), 当毛坯余量较大时(如锻件),调质放在粗车之后、半精车之前,以便因粗车产生的内应力得以在调质时消除;当毛坯余量较小时(如棒料),调质可放在粗车(相当于锻件的半精车)之前进行。高频淬火处理一般放在半精车之后,由于主轴只需要局部淬硬,故精度有一定要求而不需淬硬部分的加工,如车螺纹、铣键槽等工序,均安排在局部淬火和粗磨之后。对于精度较高的主轴在局部淬火及粗磨之后还需低温时效处理,从而使主轴的金相组织和应力状态保持稳定。
2、定位基准的选择
对实心的轴类零件,精基准面就是顶尖孔,满足基准重合和基准统一,而对于象CA6140A的空心主轴,除顶尖孔外还有轴颈外圆表面并且两者交替使用,互为基准。
3、加工阶段的划分
主轴加工过程中的各加工工序和热处理工序均会不同程度地产生加工误差和应力,因此要划分加工阶段。主轴加工基本上划分为下列三个阶段。
(1)、粗加工阶段
1)毛坯处理 毛坯备料、锻造和正火
2)粗加工 锯去多余部分,铣端面、钻中心孔和荒车外圆等
(2)、半精加工阶段
1)半精加工前热处理 对于45钢一般采用调质处理以达到220~240HBS。
2)半精加工 车工艺锥面(定位锥孔) 半精车外圆端面和钻深孔等。
(3)、精加工阶段
1)精加工前热处理 局部高频淬火
2)精加工前各种加工 粗磨定位锥面、粗磨外圆、铣键槽和花键槽,以及车螺纹等。
3)精加工 精磨外圆和内外锥面以保证主轴最重要表面的精度。
4、加工顺序的安排和工序的确定
具有空心和内锥特点的轴类零件,在考虑支承轴颈、一般轴颈和内锥等主要表面的加工顺序时,可有以下几种方案。
①外表面粗加工→钻深孔→外表面精加工→锥孔粗加工→锥孔精加工;
② 外表面粗加工→钻深孔→锥孔粗加工→锥孔精加工→外表面精加工;
③ 外表面粗加工→钻深孔→锥孔粗加工→外表面精加工→锥孔精加工。
针对CA6140车床主轴的加工顺序来说,可作这样的分析比较:
第一方案:在锥孔粗加工时,由于要用已精加工过的外圆表面作精基准面,会破坏外圆表面的精度和粗糙度,所以此方案不宜采用。
第二方案:在精加工外圆表面时,还要再插上锥堵,这样会破坏锥孔精度。另外,在加工锥孔时不可避免地会有加工误差(锥孔的磨削条件比外圆磨削条件差人 加上锥堵本身的误差等就会造成外圆表面和内锥面的不同轴,故此方案也不宜采用。
第三方案:在锥孔精加工时,虽然也要用已精加工过的外圆表面作为精基准面;但由于锥面精加工的加工余量已很小,磨削力不大;同时锥孔的精加工已处于轴加工的最终阶段,对外圆表面的精度影响不大;加上这一方案的加工顺序,可以采用外圆表面和锥孔互为基准,交替使用,能逐步提高同轴度。
经过这一比较可知,象CA6140主轴这类的轴件加工顺序,以第三方案为佳。
通过方案的分析比较也可看出,轴类零件各表面先后加工顺序,在很大程度上与定位基准的转换有关。当零件加工用的粗、精基准选定后,加工顺序就大致可以确定了。因为各阶段开始总是先加工定位基准面,即先行工序必须为后面的工序准备好所用的定位基准。例如CA6140主轴工艺过程,一开始就铣端面打中心孔。这是为粗车和半精车外圆准备定位基准;半精车外圆又为深孔加工准备了定位基准;半精车外圆也为前后的锥孔加工准备了定位基准。反过来,前后锥孔装上锥堵后的顶尖孔,又为此后的半精加工和精加工外圆准备了定位基准;而最后磨锥孔的定位基准则又是上工序磨好的轴颈表面。
工序的确定要按加工顺序进行,应当掌握两个原则:
1) 工序中的定位基准面要安排在该工序之前加工。例如,深孔加工所以安排在外圆表面粗车之后,是为了要有较精确的轴颈作为定位基准面,以保证深孔加工时壁厚均匀。
2)对各表面的加工要粗、精分开,先粗后精,多次加工,以逐步提高其精度和粗糙度。主要表面的精加工应安排在最后。
为了改善金属组织和加工性能而安排的热处理工序,如退火、正火等,一般应安排在机械加工之前。
为了提高零件的机械性能和消除内应力而安排的热处理工序,如调质、时效处理等,一般应安排在粗加工之后,精加工之前。
5、大批生产和小批生产工艺过程的比较