负数

时间:2023-06-10 23:03:54编辑:奇闻君

知识点:负数收集:宓舜纪 编辑:桂花
本知识点包括:1、0是负数吗? 2、财务费用为负数是为什么?? 3、负数相乘的实际意义是什么 4、生活中有很多地方用到负数,想想什么情况可以用负... 5、比较两个负数的大小有哪些方法 。


《负数》相关知识

负数是怎样产生的?

中国是世界上首先使用负数的国家.战国时期李悝(约前455~395)在《法经》中已出现使用负数的实例:“衣五人终岁用千五百不足四百五十.”在甘肃居延出土的汉简中,出现了大量的“负算”,如“相除以负百二十四算”、“负二千二百四十五算”、“负四算,得七算,相除得三算”.以负与得相比较,表示缺少,亏空之意,显然来自生活实践的需要.

从历史上看,负数产生的另一个原因是由于解方程的需要.据世界上第一部关于负数完整介绍的古算书《九章算术》记载,由于在解方程组的时候常常会碰到小数减大数的情况,为了使方程组能够解下去,数学家发明了负数.公元前3世纪刘徽在注解《九章算术》时率先给出了负数的定义:“两算得矢相反,要以正负以名之”,并辩证地阐明:“言负者未必少,言正者未必正于多.”而西方直到1572年,意大利数学家邦贝利(R.Bombelli,1526~1572)在他的《代数学》中才给出了负数的明确定义.

由于我国古代数字是用算筹摆出来的,为了区分正数和负数,古代数学家创造了两种方法:一种是用不同颜色的算筹分别表示,通常用红筹表示正数,黑筹表示负数;另一种是采取在正数上面斜放一支筹,来表示负数.因为后者的思想较新,很快发展为在数的最前面一位数码上斜放一小横来表示负数.1629年颇具远见的法国数学家吉拉尔(A.Girard,1595~1632)在《代数新发现》中用减号表示负数和减法运算,吉拉尔的负数符号得到人们的公认,一直沿用至今.

刘徽在注解《九章算术》“方程”章时给出了正负数的加减法则:“同名相除,异名相益,正无入负之,负无入正之”“异名相除,同名相益,正无入正之,负无入负之”.遗憾的是他未能像正负数的加减运算那样,总结出正负数乘除运算的一般法则,而是通过具体的例子予以处理.正负数的乘除法则直到1299年元代数学家朱世杰的《算学启蒙》中才有明确记载:“同名相乘为正,异名相乘为负,同名相除所得为正,异名相除所得为负.”

印度最早使用负数的是婆罗摩芨多(Brahmagupta,598~665),他在628年完成的《婆罗摩修正体系》中给出了正负数的四则运算法则,认为负数就是负债和损失,并用小点或小圈标在数字上面表示负数.

西方首先使用负数的是古希腊的丢番图(Diophantus,250年前后),尽管不承认方程的负根,但他已知道“减数乘减数得加数,加数乘减数得减数”.可见对正负数的四则运算他已了如指掌.在解方程中若出现负根,他就放弃这个方程,认为是不可解的.从这可看出负数在西方备受冷落,久久得不到人们的认可.1484年,法国的舒开在《算术三篇》中曾给出二次方程的一个负根,却又不承认它,说它是荒谬的数;意大利学者卡丹在《大术》中承认负根,但认为负数是“假数”.直到1637年笛卡尔(Descarts,1596~1650)在《几何》中认真考虑了方程正负根出现的规律,未加证明地给出了正负号法则,此后才被采用,但依旧议论纷纷.如法国数学家阿纳德(1612~1694)认为:若承认-1∶1=1∶-1,而-1<1,那么较小数与较大数的比,怎能等于较大数与较小数之比呢?直到1831年,英国著名数学家德摩根(A.DeMorgan,1806~1871)在他的《论数学的研究和困难》中仍坚持认为负数是荒谬的.他举例说:“父亲活56,他的儿子29岁,问什么时候,父亲的岁数将是儿子的2倍?”解方程56+x=2(29+x),得x=-2,他说这个结果是荒谬的.

负数的地位最后是由德国的维尔斯特拉斯和意大利的皮亚诺确立的.1860年维尔斯在柏林大学的一次讲课时,把有理数定义为整数对,即当m,n为整数时,n/m(m≠0)定义为一个有理数,当m,n中有一个为负整数时,就得到一个负有理数.这就把负数的基础确立在整数基础上.40年后,皮亚诺在著名的《算术原理新方法》(1889)中又用自然数确立了整数的地位:设a,b为自然数,则数对(a,b)即“a-b”定义一个整数,当a>b时为正整数;a<b时就得到了一个负整数.至此,通过近2000年的努力,历经数十代数学家的前仆后继的工作和努力,负数的地位终于被牢固地确立了,半个多世纪的争论也终于降下了帷幕.

知识拓展:

1:负数是如何产生的别扯什么乱七八糟的


知识要点归纳:

负数是怎样产生的?

中国是世界上首先使用负数的国家.战国时期李悝(约前455~395)在《法经》中已出现使用负数的实例:“衣五人终岁用千五百不足四百五十.”在甘肃居延出土的汉简中,出现了大量的“负算”,如“相除以负百二十四算”、“负二千二百四十五算”、“负四算,得七算,相除得三算”.以负与得相比较,表示缺少,亏空之意,显然来自生活实践的需要.

从历史上看,负数产生的另一个原因是由于解方程的需要.据世界上第一部关于负数完整介绍的古算书《九章算术》记载,由于在解方程组的时候常常会碰到小数减大数的情况,为了使方程组能够解下去,数学家发明了负数.公元前3世纪刘徽在注解《九章算术》时率先给出了负数的定义:“两算得矢相反,要以正负以名之”,并辩证地阐明:“言负者未必少,言正者未必正于多.”而西方直到1572年,意大利数学家邦贝利(R.Bombelli,1526~1572)在他的《代数学》中才给出了负数的明确定义.

由于我国古代数字是用算筹摆出来的,为了区分正数和负数,古代数学家创造了两种方法:一种是用不同颜色的算筹分别表示,通常用红筹表示正数,黑筹表示负数;另一种是采取在正数上面斜放一支筹,来表示负数.因为后者的思想较新,很快发展为在数的最前面一位数码上斜放一小横来表示负数.1629年颇具远见的法国数学家吉拉尔(A.Girard,1595~1632)在《代数新发现》中用减号表示负数和减法运算,吉拉尔的负数符号得到人们的公认,一直沿用至今.

刘徽在注解《九章算术》“方程”章时给出了正负数的加减法则:“同名相除,异名相益,正无入负之,负无入正之”“异名相除,同名相益,正无入正之,负无入负之”.遗憾的是他未能像正负数的加减运算那样,总结出正负数乘除运算的一般法则,而是通过具体的例子予以处理.正负数的乘除法则直到1299年元代数学家朱世杰的《算学启蒙》中才有明确记载:“同名相乘为正,异名相乘为负,同名相除所得为正,异名相除所得为负.”

印度最早使用负数的是婆罗摩芨多(Brahmagupta,598~665),他在628年完成的《婆罗摩修正体系》中给出了正负数的四则运算法则,认为负数就是负债和损失,并用小点或小圈标在数字上面表示负数.

西方首先使用负数的是古希腊的丢番图(Diophantus,250年前后),尽管不承认方程的负根,但他已知道“减数乘减数得加数,加数乘减数得减数”.可见对正负数的四则运算他已了如指掌.在解方程中若出现负根,他就放弃这个方程,认为是不可解的.从这可看出负数在西方备受冷落,久久得不到人们的认可.1484年,法国的舒开在《算术三篇》中曾给出二次方程的一个负根,却又不承认它,说它是荒谬的数;意大利学者卡丹在《大术》中承认负根,但认为负数是“假数”.直到1637年笛卡尔(Descarts,1596~1650)在《几何》中认真考虑了方程正负根出现的规律,未加证明地给出了正负号法则,此后才被采用,但依旧议论纷纷.如法国数学家阿纳德(1612~1694)认为:若承认-1∶1=1∶-1,而-1<1,那么较小数与较大数的比,怎能等于较大数与较小数之比呢?直到1831年,英国著名数学家德摩根(A.DeMorgan,1806~1871)在他的《论数学的研究和困难》中仍坚持认为负数是荒谬的.他举例说:“父亲活56,他的儿子29岁,问什么时候,父亲的岁数将是儿子的2倍?”解方程56+x=2(29+x),得x=-2,他说这个结果是荒谬的.

负数的地位最后是由德国的维尔斯特拉斯和意大利的皮亚诺确立的.1860年维尔斯在柏林大学的一次讲课时,把有理数定义为整数对,即当m,n为整数时,n/m(m≠0)定义为一个有理数,当m,n中有一个为负整数时,就得到一个负有理数.这就把负数的基础确立在整数基础上.40年后,皮亚诺在著名的《算术原理新方法》(1889)中又用自然数确立了整数的地位:设a,b为自然数,则数对(a,b)即“a-b”定义一个整数,当a>b时为正整数;a<b时就得到了一个负整数.至此,通过近2000年的努力,历经数十代数学家的前仆后继的工作和努力,负数的地位终于被牢固地确立了,半个多世纪的争论也终于降下了帷幕.

2:【负数是怎么产生的】


知识要点归纳:

负数的由来

  人们在生活中经常会遇到各种相反意义的量.比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食.为了方便,人们就考虑了相反意义的数来表示.于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负.可见正负数是生产实践中产生的.

  据史料记载,早在两千多年前,中国就有了正负数的概念,掌握了正负数的运算法则.人们计算的时候用一些小竹棍摆出各种数字来进行计算.比如,356摆成||| ,3056摆成等等.这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作.

  中国三国时期的学者刘徽在建立负数的概念上有重大贡献.刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之.”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.

  刘徽第一次给出了正负区分正负数的方法.他说:“正算赤,负算黑;否则以斜正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数.

  中国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之.”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”.

  用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加.零减正数得负数,零减负数得正数.异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加.零加正数等于正数,零加负数等于负数.”

  这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是中国数学家杰出的贡献之一.

  用不同颜色的数表示正负数的习惯,一直保留到现在.现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱.

  负数是正数的相反数.在实际生活中,我们经常用正数和负数来表示意义相反的两个量.夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷.

  在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数.这种引入方法可以在某种特殊的问题情景中给出负数的直观理解.而在古代数学中,负数常常是在代数方程的求解过程中产生的.对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念.3世纪的希腊学者丢番图的著作中,也只给出了方程的正根.然而,在中国的传统数学中,已较早形成负数和相关的运算法则.

  除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致.特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则.他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多.在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根.而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数.直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题.

  与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性.16、17世纪欧洲大多数数学家不承认负数是数.帕斯卡认为从0减去4是纯粹的胡说.帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理.英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年).他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的.他用以下的例子说明这一点:“父亲56岁,其子29岁.问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2.他称此解是荒唐的.当然,欧洲18世纪排斥负数的人已经不多了.随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立.

3:负数的产生


知识要点归纳:

中国是世界上首先使用负数的国家.战国时期李悝(约前455~395)在《法经》中已出现使用负数的实例:“衣五人终岁用千五百不足四百五十.”在甘肃居延出土的汉简中,出现了大量的“负算”,如“相除以负百二十四算”、“负二千二百四十五算”、“负四算,得七算,相除得三算”.以负与得相比较,表示缺少,亏空之意,显然来自生活实践的需要.

从历史上看,负数产生的另一个原因是由于解方程的需要.据世界上第一部关于负数完整介绍的古算书《九章算术》记载,由于在解方程组的时候常常会碰到小数减大数的情况,为了使方程组能够解下去,数学家发明了负数.公元前3世纪刘徽在注解《九章算术》时率先给出了负数的定义:“两算得矢相反,要以正负以名之”,并辩证地阐明:“言负者未必少,言正者未必正于多.”而西方直到1572年,意大利数学家邦贝利(R.Bombelli,1526~1572)在他的《代数学》中才给出了负数的明确定义.

由于我国古代数字是用算筹摆出来的,为了区分正数和负数,古代数学家创造了两种方法:一种是用不同颜色的算筹分别表示,通常用红筹表示正数,黑筹表示负数;另一种是采取在正数上面斜放一支筹,来表示负数.因为后者的思想较新,很快发展为在数的最前面一位数码上斜放一小横来表示负数.1629年颇具远见的法国数学家吉拉尔(A.Girard,1595~1632)在《代数新发现》中用减号表示负数和减法运算,吉拉尔的负数符号得到人们的公认,一直沿用至今.

4:【数学的问题啊,为什么会产生负数?我是温州外国语的一名初一新生,老师给我们提了一个问题,说为什么会有负数的存在?哪里有好心人帮帮我啊.】


知识要点归纳:

中国是世界上最早认识和应用负数的国家,早在两千多年前的《九章算术》中,就有正数和负数的记载.在古代,人们为区别正数和负数,常用红筹表示正,黑筹表示负,也有的将算筹正放或斜放加以区别.

除《九章算术》定义有关正负运算方法外,东汉末年刘烘、宋代扬辉也论及了正负数加减法则,都与九章算术所说的完全一致.元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则.

负数在国外得到认识和被承认,比中国要晚得多.在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根.而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数.直到十七世纪荷兰人日拉尔才首先认识和使用负数解决几何问题.

5:负数的必要性和负数是如何产生的?学霸帮帮我


知识要点归纳:

猜你喜欢:

1:0是负数吗?

提示:0不是负数。 负数是数学术语,比0小的数叫做负数,负数与正数表示意义相反的量。在数轴线上,负数都在0的左侧。 负数都比零小,则负数都比正数校零既不是正数,也不是负数。则-a

2:财务费用为负数是为什么??

提示:财务费用=手续费支出-利息收入+利息支出-汇兑损益+汇兑损失+其它。可以看出,当利息收入及汇况损益的和大于手续费支出、汇兑损失、其它时,那么财务费用的数据是负数,反之,为正数。 财务费用是公司筹集生产所需资金而发生的费用。按照我国会计...

3:负数相乘的实际意义是什么

提示:实际意义:负数乘以负数等于正数。 一个数和0相乘,是0 。 “正负术”是正负术加减法则。其中有一段话是“同名相除,异名相益,正无入负之,负无入正之。”其实他就是加减法则,以现代算式为例,可以将这段话解释如下: “同名相除”,即同号两数相减...

4:生活中有很多地方用到负数,想想什么情况可以用负...

提示:1、股票 表示股票涨跌可以用负数表示,例如股票跌了1块钱可以表示为:-1块。 2、楼梯 地下一楼的停车场可以表示为:-1楼。 3、体重 表示体重下降可以用负数表示,例如体重轻了5kg表示为:-5kg。 4、温度 气温在0摄氏度以下的用负数表示,例如零...

5:比较两个负数的大小有哪些方法

提示:比较两个负数大小的方法: 1、比较绝对值,绝对值大的反而校 2、在数轴线上,越靠近0越大。 负数用负号(Minus Sign,即相当于减号)“-”和一个正数标记,如−2,代表的就是2的相反数。于是,任何正数前加上负号便成了负数。 一个负数是其...

上一篇:南极哥斯拉

下一篇:星际移民