机器学习的分类
机器学习的分类主要有学习策略、学习方法、数据形式。学习目标等。
从学习策略方面来看,如果比较严谨的讲,那就是可分为两种:
(1) 模拟人脑的机器学习
符号学习:模拟人脑的宏现心理级学习过程,以认知心理学原理为基础,以符号数据为输入,以符号运算为方法,用推理过程在图或状态空间中搜索,学习的目标为概念或规则等。符号学习的典型方法有记忆学习、示例学习、演绎学习.类比学习、解释学习等。
神经网络学习(或连接学习):模拟人脑的微观生理级学习过程,以脑和神经科学原理为基础,以人工神经网络为函数结构模型,以数值数据为输人,以数值运算为方法,用迭代过程在系数向量空间中搜索,学习的目标为函数。典型的连接学习有权值修正学习、拓扑结构学习。
(2) 直接采用数学方法的机器学习
主要有统计机器学习。
统计机器学习是基于对数据的初步认识以及学习目的的分析,选择合适的数学模型,拟定超参数,并输入样本数据,依据一定的策略,运用合适的学习算法对模型进行训练,最后运用训练好的模型对数据进行分析预测。
统计机器学习三个要素:
模型(model):模型在未进行训练前,其可能的参数是多个甚至无穷的,故可能的模型也是多个甚至无穷的,这些模型构成的集合就是假设空间。
策略(strategy):即从假设空间中挑选出参数最优的模型的准则。模型的分类或预测结果与实际情况的误差(损失函数)越小,模型就越好。那么策略就是误差最小。
算法(algorithm):即从假设空间中挑选模型的方法(等同于求解最佳的模型参数)。机器学习的参数求解通常都会转化为最优化问题,故学习算法通常是最优化算法,例如最速梯度下降法、牛顿法以及拟牛顿法等。
如果从学习方法方面来看的话,主要是归纳学习和演绎学习以及类比学习、分析学习等。
如果是从学习方式方面来看,主要有三种,为监督学习、无监督学习、 强化学习。
当从数据形式上来看的话,为 结构化学习、非结构化学习、
还可从学习目标方面来看,为 概念学习、规则学习、函数学习、类别学习、贝叶斯网络学习。
机器学习按照其学习方式来分类可分为哪四种主要类型
机器学习是人工智能的一个重要领域,按照其学习方式来分类,主要可以分为以下四种类型:监督学习:这种类型的机器学习利用已知的数据集来训练模型,并用于预测未知数据的结果。其过程是通过输入数据和对应的输出数据,通过学习建立一个函数来预测输出。无监督学习:这种类型的机器学习没有明确的输出,只有输入数据。其任务是在输入数据中找到有意义的结构和模式。无监督学习通常用于聚类和降维。半监督学习:这种类型的机器学习结合了监督学习和无监督学习的特点。在半监督学习中,一部分数据有标签,一部分数据没有标签,通过有标签数据的指导来学习未标签数据。强化学习:这种类型的机器学习利用试错法进行学习,通过对环境不断的尝试和反馈来获得最佳决策。其过程是在不断的尝试和学习中,通过获得奖励和惩罚来调整学习策略,以最大化长期奖励。
机器学习的一般流程一般不包括哪项
亲亲,您好,正在为您查询相关事宜,请稍等哦[微笑]【摘要】
机器学习的一般流程一般不包括哪项【提问】
亲亲,您好,正在为您查询相关事宜,请稍等哦[微笑]【回答】
亲,机器学习的一般流程一般不包括规定学习[微笑]【回答】
机器学习包括,监督学习,半监督学习,无监督学习和强化学习【回答】
一个完整的机器学习项目一般流程包括:
1、抽象成数学问题【回答】
2、数据获取及分析3、数据预处理4、特征工程5、训练模型选择与调优6、后处理7、模型评估【回答】
希望我的回答对您能够有所帮助哦【回答】
[微笑][微笑]【回答】
祝您生活愉快哦[心]【回答】