八年级下册数学期末试卷及答案
自信,是成功的一半;平淡,是成功的驿站;努力,是成功的积淀;祝福,是成功的先决条件。祝你 八年级 数学期末考试取得好成绩,期待你的成功!以下是我为大家整理的八年级下册数学期末试卷,希望你们喜欢。
八年级下册数学期末试题
一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.如果 =x成立,则x一定是( )
A.正数 B.0 C.负数 D.非负数
2.以下列各组数为三角形的三边,能构成直角三角形的是( )
A.4,5,6 B.1,1, C.6,8,11 D.5,12,23
3.矩形具有而菱形不具有的性质是( )
A.对角线互相平分 B.对角线相等
C.对角线垂直 D.每一条对角线平分一组对角
4.已知|a+1|+ =0,则直线y=ax﹣b不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.下列四个等式:① ;②(﹣ )2=16;③( )2=4;④ .正确的是( )
A.①② B.③④ C.②④ D.①③
6.顺次连接矩形ABCD各边中点,所得四边形必定是( )
A.邻边不等的平行四边形 B.矩形
C.正方形 D.菱形
7.若函数y=kx+2的图象经过点(1,3),则当y=0时,x=( )
A.﹣2 B.2 C.0 D.±2
8.等边三角形的边长为2,则该三角形的面积为( )
A. B. C. D.3
9.某同学五天内每天完成家庭作业的时间(时)分别为2,3,2,1,2,则对这组数据的下列说法中错误的是
( )
A.平均数是2 B.众数是2 C.中位数是2 D.方差是2
10.下列函数中,自变量的取值范围选取错误的是( )
A.y=x+2中,x取任意实数 B.y= 中,x取x≤﹣1的实数
C.y= 中,x取x≠﹣2的实数 D.y= 中,x取任意实数
11.如图,直线y=kx+b经过点A(2,1),则下列结论中正确的是( )
A.当y≤2时,x≤1 B.当y≤1时,x≤2 C.当y≥2时,x≤1 D.当y≥1时,x≤2
12.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为( )
A.6
八年级数学上册期末试卷及答案
关键的八年级数学期末考试就临近了,只要努力过、奋斗过,就不会后悔。下面是我为大家精心整理的八年级数学上册期末试卷,仅供参考。 八年级数学上册期末试题 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分. 1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A. B. C. D. 2.下列运算正确的是( ) A.a+a=a2 B.a3•a2=a5 C.2 =2 D.a6÷a3=a2 3. 的平方根是( ) A.2 B.±2 C. D.± 4.用科学记数法表示﹣0.00059为( ) A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7 5.使分式 有意义的x的取值范围是( ) A.x≤3 B.x≥3 C.x≠3 D.x=3 6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC 7.若 有意义,则 的值是( ) A. B.2 C. D.7 8.已知a﹣b=1且ab=2,则式子a+b的值是( ) A.3 B.± C.±3 D.±4 9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是( ) A.a B.2a C.3a D.4a 10.已知xy<0,化简二次根式y 的正确结果为( ) A. B. C. D. 11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为( ) A. B. C.2 D. 12.若关于x的分式方程 无解,则常数m的值为( ) A.1 B.2 C.﹣1 D.﹣2 二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分. 13.将xy﹣x+y﹣1因式分解,其结果是 . 14.腰长为5,一条高为3的等腰三角形的底边长为 . 15.若x2﹣4x+4+ =0,则xy的值等于 . 16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C= 度. 三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。 17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2. 18.先化简,再求值: (1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2. (2)( )÷ ,其中a= . 19.列方程,解应用题. 某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作速度,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天? 20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论. 21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF. (1)求证:AE=AF; (2)求∠EAF的度数. 22.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索: 设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m . a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a= ,b= . (2)利用所探索的结论,用完全平方式表示出: = . (3)请化简: . 八年级数学上册期末试卷参考答案 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分. 1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A. B. C. D. 【考点】轴对称图形. 【分析】根据轴对称图形的概念求解. 【解答】解:A、不是轴对称图形,故本选项错误; B、不是轴对称图形,故本选项错误; C、不是轴对称图形,故本选项错误; D、是轴对称图形,故本选项正确. 故选D. 【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 2.下列运算正确的是( ) A.a+a=a2 B.a3•a2=a5 C.2 =2 D.a6÷a3=a2 【考点】同底数幂的除法;合并同类项;同底数幂的乘法;二次根式的加减法. 【分析】根据合并同类项、同底数幂的乘法、除法,即可解答. 【解答】解:A、a+a=2a,故错误; B、a3•a2=a5,正确; C、 ,故错误; D、a6÷a3=a3,故错误; 故选:B. 【点评】本题考查了合并同类项、同底数幂的乘法、除法,解决本题的关键是熟记合并同类项、同底数幂的乘法、除法. 3. 的平方根是( ) A.2 B.±2 C. D.± 【考点】算术平方根;平方根. 【专题】常规题型. 【分析】先化简 ,然后再根据平方根的定义求解即可. 【解答】解:∵ =2, ∴ 的平方根是± . 故选D. 【点评】本题考查了平方根的定义以及算术平方根,先把 正确化简是解题的关键,本题比较容易出错. 4.用科学记数法表示﹣0.00059为( ) A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7 【考点】科学记数法—表示较小的数. 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:﹣0.00059=﹣5.9×10﹣4, 故选:C. 【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 5.使分式 有意义的x的取值范围是( ) A.x≤3 B.x≥3 C.x≠3 D.x=3 【考点】分式有意义的条件. 【分析】分式有意义的条件是分母不等于零,从而得到x﹣3≠0. 【解答】解:∵分式 有意义, ∴x﹣3≠0. 解得:x≠3. 故选:C. 【点评】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键. 6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC 【考点】平行四边形的判定. 【分析】根据平行四边形判定定理进行判断. 【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意; B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意; C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意; D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意; 故选D. 【点评】本题考查了平行四边形的判定. (1)两组对边分别平行的四边形是平行四边形. (2)两组对边分别相等的四边形是平行四边形. (3)一组对边平行且相等的四边形是平行四边形. (4)两组对角分别相等的四边形是平行四边形. (5)对角线互相平分的四边形是平行四边形. 7.若 有意义,则 的值是( ) A. B.2 C. D.7 【考点】二次根式有意义的条件. 【分析】根据二次根式中的被开方数必须是非负数求出x的值,根据算术平方根的概念计算即可. 【解答】解:由题意得,x≥0,﹣x≥0, ∴x=0, 则 =2, 故选:B. 【点评】本题考查的是二次根式有意义的条件以及算术平方根的概念,掌握二次根式中的被开方数必须是非负数是解题的关键. 8.已知a﹣b=1且ab=2,则式子a+b的值是( ) A.3 B.± C.±3 D.±4 【考点】完全平方公式. 【专题】计算题;整式. 【分析】把a﹣b=1两边平方,利用完全平方公式化简,将ab=2代入求出a2+b2的值,再利用完全平方公式求出所求式子的值即可. 【解答】解:把a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1, 将ab=2代入得:a2+b2=5, ∴(a+b)2=a2+b2+2ab=5+4=9, 则a+b=±3, 故选C 【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是( ) A.a B.2a C.3a D.4a 【考点】平行四边形的性质. 【分析】由▱ABCD的周长为4a,可得AD+CD=2a,OA=OC,又由OE⊥AC,根据线段垂直平分线的性质,可证得AE=CE,继而求得△DCE的周长=AD+CD. 【解答】解:∵▱ABCD的周长为4a, ∴AD+CD=2a,OA=OC, ∵OE⊥AC, ∴AE=CE, ∴△DCE的周长为:CD+DE+CE=CD+DE+AE=CD+AD=2a. 故选:B. 【点评】此题考查了平行四边形的性质以及线段垂直平分线的性质.注意得到△DCE的周长=AD+CD是关键. 10.已知xy<0,化简二次根式y 的正确结果为( ) A. B. C. D. 【考点】二次根式的性质与化简. 【分析】先求出x、y的范围,再根据二次根式的性质化简即可. 【解答】解:∵要使 有意义,必须 ≥0, 解得:x≥0, ∵xy<0, ∴y<0, ∴y =y• =﹣ , 故选A. 【点评】本题考查了二次根式的性质的应用,能正确根据二次根式的性质进行化简是解此题的关键. 11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为( ) A. B. C.2 D. 【考点】翻折变换(折叠问题). 【分析】DE是边AB的垂直平分线,则AE=BE,设AE=x,在直角△BCE中利用勾股定理即可列方程求得x的值,进而求得EC的长. 【解答】解:∵DE垂直平分AB, ∴AE=BE, 设AE=x,则BE=x,EC=4﹣x. 在直角△BCE中,BE2=EC2+BC2,则x2=(4﹣x)2+9, 解得:x= , 则EC=AC﹣AE=4﹣ = . 故选B. 【点评】本题考查了图形的折叠的性质以及勾股定理,正确理解DE是AB的垂直平分线是本题的关键. 12.若关于x的分式方程 无解,则常数m的值为( ) A.1 B.2 C.﹣1 D.﹣2 【考点】分式方程的解;解一元一次方程. 【专题】计算题;转化思想;一次方程(组)及应用;分式方程及应用. 【分析】将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值. 【解答】解:将方程两边都乘以最简公分母(x﹣3),得:1=2(x﹣3)﹣m, ∵当x=3时,原分式方程无解, ∴1=﹣m,即m=﹣1; 故选C. 【点评】本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键. 二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分. 13.将xy﹣x+y﹣1因式分解,其结果是 (y﹣1)(x+1) . 【考点】因式分解-分组分解法. 【分析】首先重新分组,进而利用提取公因式法分解因式得出答案. 【解答】解:xy﹣x+y﹣1 =x(y﹣1)+y﹣1 =(y﹣1)(x+1). 故答案为:(y﹣1)(x+1). 【点评】此题主要考查了分组分解法分解因式,正确分组是解题关键. 14.腰长为5,一条高为3的等腰三角形的底边长为 8或 或3 . 【考点】等腰三角形的性质;三角形三边关系. 【分析】根据不同边上的高为3分类讨论,利用勾股定理即可得到本题的答案. 【解答】解:①如图1. 当AB=AC=5,AD=3, 则BD=CD=4, 所以底边长为8; ②如图2. 当AB=AC=5,CD=3时, 则AD=4, 所以BD=1, 则BC= = , 即此时底边长为 ; ③如图3. 当AB=AC=5,CD=3时, 则AD=4, 所以BD=9, 则BC= =3 , 即此时底边长为3 . 故答案为:8或 或3 . 【点评】本题考查了等腰三角形的性质,勾股定理,解题的关键是分三种情况分类讨论. 15.若x2﹣4x+4+ =0,则xy的值等于 6 . 【考点】解二元一次方程组;非负数的性质:偶次方;非负数的性质:算术平方根;配方法的应用. 【专题】计算题;一次方程(组)及应用. 【分析】已知等式变形后,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出xy的值. 【解答】解:∵x2﹣4x+4+ =(x﹣2)2+ =0, ∴ , 解得: , 则xy=6. 故答案为:6 【点评】此题考查了解二元一次方程组,配方法的应用,以及非负数的性质,熟练掌握运算法则是解本题的关键. 16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C= 180 度. 【考点】勾股定理的逆定理;勾股定理. 【分析】勾股定理的逆定理是判定直角三角形的方法之一. 【解答】解:连接AC,根据勾股定理得AC= =25, ∵AD2+DC2=AC2即72+242=252, ∴根据勾股定理的逆定理,△ADC也是直角三角形,∠D=90°, 故∠A+∠C=∠D+∠B=180°,故填180. 【点评】本题考查了勾股定理和勾股定理的逆定理,两条定理在同一题目考查,是比较好的题目. 三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。 17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2. 【考点】作图-轴对称变换. 【分析】分别利用关于x轴、y轴对称点的坐标性质得出各对应点的位置,进而得出答案. 【解答】解:△ABC各顶点的坐标以及△ABC关于x轴对称的△A1B1C1的各顶点坐标: A1(﹣3,﹣2),B1(﹣4,3),C1(﹣1,1), 如图所示:△A2B2C2,即为所求. 【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键. 18.先化简,再求值: (1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2. (2)( )÷ ,其中a= . 【考点】分式的化简求值;整式的混合运算—化简求值. 【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可; (2)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可. 【解答】解:(1)原式=5x2﹣x2+y2﹣4x2+4xy﹣y2 =4xy, 当x=1,y=2时,原式=4×1×2=8; (2)原式= • = • =a﹣1, 当a= 时,原式= ﹣1. 【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 19.列方程,解应用题. 某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作速度,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天? 【考点】分式方程的应用. 【分析】设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 ,根据总的工作量为1列出方程并解答. 【解答】解:设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 , 根据题意,得: +2×( + )=1, 解得x=4.5. 经检验,x=4.5是原方程的根. 答:乙车间单独制作这批棉学生服需要4.5天. 【点评】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数. 20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论. 【考点】因式分解的应用. 【分析】根据完全平方公式,可得非负数的和为零,可得每个非负数为零,可得a、b、c的值,根据勾股定理逆定理,可得答案. 【解答】解:△ABC是等腰直角三角形. 理由:∵a2﹣4a+b2﹣4 c=4b﹣16﹣c2, ∴(a2﹣4a+4)+(b2﹣4b+4)+(c2﹣4 c+8)=0, 即:(a﹣2)2+(b﹣2)2+(c﹣2 )2=0. ∵(a﹣2)2≥0,(b﹣2)2≥0,(c﹣2 )2≥0, ∴a﹣2=0,b﹣2=0,c﹣2 =0, ∴a=b=2,c=2 , ∵22+22=(2 )2, ∴a2+b2=c2, 所以△ABC是以c为斜边的等腰直角三角形. 【点评】本题考查了因式分解的应用,勾股定理逆定理,利用了非负数的和为零得出a、b、c的值是解题关键. 21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF. (1)求证:AE=AF; (2)求∠EAF的度数. 【考点】全等三角形的判定与性质;平行四边形的性质. 【分析】(1)寻找分别含有AE和AF的三角形,通过证明两三角形全等得出AE=AF. (2)在∠BAD中能找出∠EAF=∠BAD﹣(∠BAE+∠FAD),在(1)中我们证出了三角形全等,将∠FAD换成等角∠AEB即可解决. 【解答】(1)证明:∵四边形ABCD是平行四边形,并且∠BCD=120°, ∴∠BCE=∠DCF=60°,CB=DA,CD=BA,∠ABC=∠ADC, ∵CB=CE,CD=CF, ∴△BEC和△DCF都是等边三角形, ∴CB=CE=BE=DA,CD=CF=DF=BA, ∴∠ABC+∠CBE=∠ADC+∠CDF, 即:∠ABE=∠FDA 在△ABE和△FDA中,AB=DF,∠ABE=∠FDA,BE=DA, ∴△ABE≌△FDA (SAS), ∴AE=AF. (2)解:∵在△ABE中,∠ABE=∠ABC+∠CBE=60°+60°=120°, ∴∠BAE+∠AEB=60°, ∵∠AEB=∠FAD, ∴∠BAE+∠FAD=60°, ∵∠BAD=∠BCD=120°, ∴∠EAF=∠BAD﹣(∠BAE+∠FAD)=120°﹣60°=60°. 答:∠EAF的度数为60°. 【点评】本题考查全等三角形的判定与性质,解题的关键是寻找合适的全等三角形,通过寻找等量关系证得全等,从而得出结论. 22.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索: 设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m . a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a= m2+3n2 ,b= 2mn . (2)利用所探索的结论,用完全平方式表示出: = (2+ )2 . (3)请化简: . 【考点】二次根式的性质与化简. 【专题】阅读型. 【分析】(1)利用已知直接去括号进而得出a,b的值; (2)直接利用完全平方公式,变形得出答案; (3)直接利用完全平方公式,变形化简即可. 【解答】解:(1)∵a+b =(m+n )2, ∴a+b =(m+n )2=m2+3n2+2 mn, ∴a=m2+3n2,b=2mn; 故答案为:m2+3n2;2mn; (2) =(2+ )2; 故答案为:(2+ )2; (3)∵12+6 =(3+ )2, ∴ = =3+ .
八年级下册数学期末试卷及答案
八年级下册数学期末试卷及答案 大家的成完成了初一阶段的学习,进入紧张的初二阶段。下面是我整理的八年级下册数学期末试卷及答案,欢迎参考! 【1】八年级下册数学期末试卷及答案 一、选择题(每小题3分,共3’]p- 0分) 1、直线y=kx+b(如图所示),则不等式kx+b≤0的解集是( ) A、x≤2 B、x≤-1 C、x≤0 D、x>-1 2、如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步,能近 似刻画小亮到出发点M的距离y与时间x之间关系的函数图像是( ) 3、下列各式一定是二次根式的是( ) A、 B、 C、 D、 4、如果一组数据3,7,2,a,4,6的平均数是5,则a的值是( ) A、8 B、5 C、4 D、3 5、某班一次数学测验的成绩如下:95分的有3人,90分的有5人,85分的有6人,75分的有12人,65 分的有16人,55分的有5人,则该班数学测验成绩的众数是( ) A、65分 B、75分 C、16人 D、12人 6、如图,点A是正比例函数y=4x图像上一点,AB⊥y轴于点B,则ΔAOB的面积是( ) A、4 B、3 C、2 D、1 7、下列命题中,错误的是( ) A、有一组邻边相等的平行四边形是菱形 B、四条边都相等的四边形是正方形 C、有一个角是直角的平行四边形是矩形 D、相邻三个内角中,两个角都与中间的角互补的四边形是平行四边形 8、如图,在一个由4 4个小正方形网格中,阴影部分面积与正方形ABCD的面积比是( ) A、3:4 B、5:8 C、9:16 D、1:2 9、如果正比例函数y=(k-5)x的.图像在第二、四象限内,则k的取值范围是( ) A、k0 C、k>5 D、k<5 10、已知甲、乙两组数据的平均数相等,如果甲组数据的方差为0.055,乙组数据的方差为0.105。则( ) A、甲组数据比乙组数据波动大 B、甲组数据比乙组数据波动小 C、甲、乙两组数据的波动一样大 D、甲、乙两组数据的波动不能比较 二、填空题(每小题3分,共24分) 11、数据1,-3,2,3,-2,1的中位数是 ,平均数为 。 12、若平行四边形的一组邻角的比为1:3,则较大的角为 度。 13、如果菱形的两条对角线的长分别是6 cm和8 cm,那么菱形的边长为 cm。 14、函数y=-2x的图像在每个象限内,y随x的增大而 。 15、等腰三角形的底边长为12 cm,一腰的长为10 cm,则这个等腰三角形底边上的高为 cm。 16、已知一个三角形的周长为20 cm,则连接它的各边的中点所得的三角形的周长为 cm 17、一次函数的图像过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函 数解析式 。 18、若a= ,b= ,则2a(a+b)-(a+b)2的值是 。 三、解答题(共46分) 19、计算(10分) (1) (2) 20、(8分)当 时,求 的值 21、(8分)已知一次函数y=x+2的图像与正比例函数y=kx的图像都经过点(-1,m)。 (1)求正比例函数的解析式; (2)在同一坐标系中画出一次函数与正比例函数的图像。 22、(10分)如图,在平行四边形ABCD中,点E是CD的的中点,AE的延长线与BC交于点F。 (1)求证:ΔAED≌ΔFEC; (2)连接AC、DF,求证四边形ACFD是平行四边形。 23、(10分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元),现有两种购买方案: 方案一:若单位赞助广告费10000元,则该单位所购买门票的价格为每张60元(总费用=广告费+门 票费);方案二:购买门票方式如图所示。解答下列问题: (1)方案一中,y与x的函数关系式为 ; (2)方案二中,当0≤x≤100时,y与x的函数关系式为 , 当x>100时,y与x的函数关系式为 ; (3)甲、乙两单位分别采用方案一、方案二购买本场足球门赛票共700张, 花去费用总计58000元,甲、乙两单位各购买门票多少张? 答案 一、ACBAA CBBDB 二、11、1, 12、135 13、5 14、减小 15、8 16、30 17、y=-2x-2(答案不唯一) 18、1 三、19、(1)7 (2) 20、化简得 ,代值得原式=112 21、(1)y=-x (2)略 22、略 23、(1)y=60x+10000 (2)y=100x, y=80x+2000 (3)设甲购买门票a张,则乙购买门票(700-a)张, 当0≤700-a≤100s时,有60a+10000+100(700-a)=58000,解得a=550. 当a=550时,700-a=150>100,不符合题意,舍去; 当700-a>100时,有60a+10000+80(700-a)=58000,解得a=500.当A=500时,700-a=200 即甲、乙两单位各购买门票500张、200张 【2】八年级下册数学期末试卷及答案 一、选择题(本大题共10小题,每题3分,共30分) 1.下列根式中不是最简二次根式的是( ) A. B. C. D. 2.下列各组数中,能构成直角三角形的三边的长度是( ) A.3,5,7 B. C. 0.3,0.5,0.4 D.5,22,23 3. 正方形具有而矩形没有的性质是( ) A. 对角线互相平分 B. 每条对角线平分一组对角 C. 对角线相等 D. 对边相等 4.一次函数 的图象不经过的象限是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5.AC,BD是□ABCD的两条对角线,如果添加一个条件,使□ABCD为矩形,那么这个条件可以是( ) A. AB=BC B. AC=BD C. AC⊥BD D. AB⊥BD 6.一次函数 ,若 ,则它的图象必经过点( ) A. (1,1) B. (—1,1) C. (1,—1) D. (—1,—1) 7.比较 , , 的大小,正确的是( ) A. < < B. < < C. < < D. < < 8. 某人驾车从A地走高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从A地出发到达B地的过程中,油箱中所剩燃油 (升)与时间 (小时)之间的函数图象大致是( ) A B C D 9. 某校八年级甲、乙两班举行电脑汉字输入速度比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表: 班级 参加人数 中位数 方差 平均字数 甲 55 149 191 135 乙 55 151 110 135 有一位同学根据上表得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀的人数比甲班优秀的人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是( ) A. ①②③ B. ①② C. ①③ D. ②③ 10. 如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论: ①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是( ) A.1 B.2 C.3 D. 4x98 二、填空题(本大题共8小题,每题3分,共24分) 11.二次根式 中字母 的取值范围是__________. 12.已知一次函数 ,则它的图象与坐标轴围成的三角形面积是__________. 13.如图, □ABCD的对角线AC,BD相交于点O,点E,F分别是AO,BO的中点,若AC+BD=24㎝,△OAB的周长是18㎝,则EF= ㎝. 14.在一次函数 中,当0≤ ≤5时, 的最小值为 . 15.如图,已知∠B=∠C=∠D=∠E=90°,且AB=CD=3,BC=4,DE=EF=2,则AF的长是_____. 16.若一组数据 , , ,…, 的方差是3,则数据 -3, -3, -3,…, -3的方差是 . 17. 如图,已知函数 和 的图象交点为P,则不等式 的解集为 . 18.如图,点P 是□ABCD 内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论: ①S1+ S3= S2+S4 ②如果S4>S2 ,则S3 >S1 ③若S3=2S1,则S4=2S2 ④若S1-S2=S3-S4,则P点一定在对角线BD上. 其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上). 三、解答题(本大题共46分) 19. 化简求值(每小题3分,共6分) (1) - × + (2) 20.(本题5分)已知y与 成正比例,且 时, . (1)求y与x之间的函数关系式; (2)设点( ,-2)在(1)中函数的图象上,求 的值. 21.(本题7分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,求EF的长. 22.(本题8分)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题: (1)这辆汽车往、返的速度是否相同? 请说明理由; (2)求返程中y与x之间的函数表达式; (3)求这辆汽车从甲地出发4h时与甲地的距离. 23.(本题10分)某学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表: 班级 行为规范 学习成绩 校运动会 艺术获奖 劳动卫生 甲班 10 10 6 10 7 乙班 10 8 8 9 8 丙班 9 10 9 6 9 根据统计表中的信息解答下列问题: (1)请你补全五项成绩考评分析表中的数据: 班级 平均分 众数 中位数 甲班 8.6 10 乙班 8.6 8 丙班 9 9 (2)参照上表中的数据,你推荐哪个班为区级先进班集体?并说明理由. (3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为区级先进班集体? 解:(1)补全统计表; (3)补全统计图,并将数据标在图上. 24.(本题10分)已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND. (1)判断四边形BNDM的形状,并证明; (2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由; (3)在(2)的条件下,若∠BAC=30°,∠ACD=45°,求四边形BNDM的各内角的度数. 淮南市2013—2014学年度第二学期期终教学质量检测 八年级数学试卷参考答案及评分标准 一、选择题:(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C C B B B D A C A D 二、填空题:(每小题3分,共24分) 题号 11 12 13 14 15 16 17 18 答案 ≥2 3 -7 10 12 >1 ①④ 注:第12题写 不扣分. 三、解答题(46分) 19、(1) …………3分 (2)16-6 …………3分 20、解:(1) 设y=k(x+2) (1+2)k=-6 k=-2 …………3分 (2) 当y=-2时 -2a-4=-2 a=-1 ………………5分 21、解∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3. 根据折叠的性质得:EG=BE=1,GF=DF. ……………1分 设DF=x,则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2. 在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3-x)2, 解得: . ………………6分 ∴DF= ,EF=1+ ……………7分 22、解:(1)不同.理由如下: 往、返距离相等,去时用了2小时,而返回时用了2.5小时, 往、返速度不同.…………………2分 (2)设返程中 与 之间的表达式为 , 则 解得 …………………5分 .( )(评卷时,自变量的取值范围不作要求) 6分 (3)当 时,汽车在返程中, . 这辆汽车从甲地出发4h时与甲地的距离为48km. ……………8分 班级 平均分 众数 中位数 甲班 10 乙班 8 丙班 8.6 23、解:(1) ……………3分 (2)以众数为标准,推选甲班为区级先进班集体. 阅卷标准:回答以中位数为标准,推选甲班为区级先进班集体,同样得分. ……………5分) (3) (分) 补图略 ……………(9分) 推荐丙班为区级先进班集体……………(10分) 24、(1)∵M0=N0,OB=OD ∴四边形BNDM是平行四边形 …………………3分 (2) 在Rt△ABC中,M为AC中点 ∴BM= AC 同理:DM= AC ∴BM=DM ∴平行四边行BNDM是菱形…………………7分 (3) ∵BM=AM ∴∠ABM=∠BAC=30° ∴∠BMC=∠ABM+∠BAC =60° 同理:∠DMC=2∠DAC=90° ∴∠BMD=∠BMC+∠DMC=90°+60°=150° ∴∠MBN=30° ∴四边形BNDM的各内角的度数是150°,30°,150°,30°.……………10分 ;
浙教版八年级下册数学期末试卷及答案
风儿静静的吹动,凤凰花吐露着嫣红,祝你八年级数学期末考试顺利!我整理了关于浙教版八年级下册数学期末试卷,希望对大家有帮助! 浙教版八年级下册数学期末试题 一、选择题(本大题共有6小题,每小题3分,共18分) 1. 以下问题,不适合用全面调查的是(▲) A.了解全班同学每周体育锻炼的时间 B.旅客上飞机前的安检 C.学校招聘教师,对应聘人员面试 D.了解全市中小学生每天的零花钱 2. 下列各等式中成立的是 ( ) A.- B.- =-0.6 C. =-13 D. =±6 3.下列说法不正确的是 ( ) A.了解玉米新品种“农大108”的产量情况适合作抽样调查 B.了解本校八年级(2)班学生业余爱好适合作普查 C.明天的天气一定是晴天是随机事件 D.为了解A市20000名学生的中考成绩,抽查了500名学生的成绩进行统计分析,样本容量是500名 4.对于反比例函数 ,下列说法不正确的是( ) A.点(-2,2)在它的图像上 B.它的图像在第二、四象限 C.当 时, 随 的增大而减小 D.当 时, 随 的增大而增大 5.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF.若∠BEC=60°,则∠EFD的度数为 ( ) A.10° B.15° C.18° D.20° 6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程 ,根据此情景,题中用“…”表示的缺失的条件应补( ) A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20% B.甲单位比乙单位人均多捐20元,且甲单位的人数比乙单位的人数多20% C.乙单位比甲单位人均多捐20元,且甲单位的人数比乙单位的人数多20% D.乙单位比甲单位人均多捐20元,且乙单位的人数比甲单位的人数多20% 二、填空题(本大题共有10小题,每小题3分,共30分) 7. 的最简公分母是 . 8.当a= 时,最简二次根式 与 是同类二次根式. 9.如果方程 有一个根为1,该方程的另一个根为 . 10.在●○●○○●○○○●○○○○●○○○○○中,空心圈出现的频率是 . 11.小明要把一篇24 000字的社会调查报告录入电脑.完成录入的时间t(分)与录入文字的速度v(字/分)的函数关系可以表示为 . 12.如果 + =0,则 + = . 13.已知关于 的方程 无解,则m的值为 . 14.近年来某市为发展教育事业,加大了对教育经费的投入,2011年投入3000万元,2013年投入3630万元.则2011年至2013年某市投入教育经费的年平均增长率为 . 15.如图,在△ABC中,点D、E、F分别在边BC、AB、CA上,且DE∥CA,DF∥BA.下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是正方形.其中,正确的有 个. 16.如图,点A是双曲线 (x>0)上的一动点,过A作AC⊥y轴,垂足为点C,作AC的垂直平分线交双曲线于点B,交x轴于点D.当点A在双曲线上从左到右运动时,对四边形ABCD的面积的变化情况,小明列举了四种可能:①逐渐变小;②由大变小再由小变大 ;③由小变大再由大变小; ④不变. 你认为正确的是 .(填序号) 三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤) 17.(本题满分12分) 计算: (1) ; (2) . 18.(本题满分8分)解下列方程: (1) ; (2) . 19.(本题满分8分)在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%. (1)试求出a的值; (2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件). 20.(本题满分8分)如图,已知△ABC的三个顶点的坐标分别 为A(-6,0)、B(-2,3)、C(-1,0) . (1)请直接写出与点B关于坐标原点O的对称点 B1的 坐标; (2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的 △A′B′C′图形,直接写出点A的对应点A′的坐标; (3)若四边形A′B′C′D′为平行四边形,请直接写出第 四个顶点D′的坐标. 21.(本题满分10分)4月23日是“世界读书日”,今年世界读书日的主题是“阅读,让我们的世界更丰富”.某校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计图表.请根据统计图表提供的信息解答下列问题: 初中生课外阅读情况调查统计表 种类 频数 频率 卡通画 a 0.45 时文杂志 b 0.16 武侠小说 100 c 文学名著 d e (1)这次随机调查了 名学生,统计表中d= ,请补全统计图; (2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是 ; (3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍? 22.(本题满分10分)已知关于x的一元二次方程 . (1)若方程有两个相等的实数根,求a的值及此时方程的根; (2)若方程有两个不相等的实数根,求a的取值范围. 23.(本题满分10分)如图,点E、F为线段BD的两个三等分点,四边形AECF是菱形. (1)试判断四边形ABCD的形状,并加以证明; (2)若菱形AECF的周长为20,BD为24,试求四边形ABCD的面积. 24.(本题满分10分)某商店进了一批服装,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就将减少100件.如果商店销售这批服装要获利润12000元,那么这种服装售价应定为多少元?该商店应进这种服装多少件? 25.(本题满分12分)如图,一次函数y=k1x+b与x轴交于点A,与反比例函数y= 相交于B、C两点,过点C作CD垂直于x轴,垂足为D,若点C的横坐标为2,OA=OD,△COD的面积为4. (1)求反比例函数和一次函数的关系式; (2)根据所给条件,请直接写出不等式k1x+b≤ 的解集; (3)若点P( , ),Q( ,2)是函数 图象上两点,且 > ,求 的 取值范围(直接写出结果). 26.(本题满分14分) 在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M,FH的中点是P. (1)如图1,点A、C、E在同一条直线上,根据图形填空: ①△BMF是 三角形; ②MP与FH的位置关系是 ,MP与FH的数量关系是 ; (2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,解答下列问题: ① 证明:△BMF是等腰三角形; ②(1)中得到的MP与FH的位置关系与数量关系的结论是否仍然成立?证明你的结论; (3)将图2中的CE缩短到图3的情况,(2)中的三个结论还成立吗?(成立的不需要说明理由,不成立的需要说明理由) 浙教版八年级下册数学期末试卷参考答案 一、选择题(本大题共有6小题,每小题3分,共18分) 1.D;2.A;3.D;4.C;5.B;6.C. 二、填空题(本大题共有10小题,每小题3分,共30分) 7. ;8. 5;9.2;10. 0.75;11. ;12. 1+ ;13.-4;14. 10﹪;15. 3;16. ④. 三、解答题(共10题,102分.下列答案仅供参考,有其它答案或解法,参照标准给分.) 17. (本题满分12分) (1)原式== - (4分)=- (6分);(2)原式= (2分) = (4分)= (6分). 18.(本题满分8分) (1) ,(2分) (3分), 检验:当 时,x-2≠0, 是原方程的解(4分);(2) , (2分), , (4分). 19.(本题满分8分) (1)a=4÷20%=20 (3分);(2)∵ , (5分), (7分)∴可能性从小到大排序为:①③② (8分,若直接写出正确结论不扣分). 20.(本题满分8分) (1)B1(2,-3)(2分);(2)作图略(4分),A′((0,-6)(6分);(3)(3, -5). 21.(本题满分10分)(1)400(2分),56(4分),补图(略6分);(2)直角(或填90°)(8分);(3)最喜欢文学名著类书籍有1500×0.14=210(名)(10分). 22.(本题满分10分) (1)∵关于x的一元二次方程 有两个相等的实数根,∴ 且 (2分),∴ (3分),方程为-4x2-4x-1=0,解得 (6分);(2)∵关于x的一元二次方程 有两个不相等的实数根,∴ 且 (8分),∴ 且 (10分). 23.(本题满分10分)(1)四边形ABCD为菱形.连接AC交BD于点O,∵四边形AECF是菱形,∴AC⊥BD,AO=OC,EO=OF.又点E、F为线段BD的两个三等分点,∴BE=FD,∴BO=OD,∵AO=OC,∴四边形ABCD为平行四边形(4分),∵AC⊥BD,∴四边形AECF为菱形(6分);(2)∵四边形AECF为菱形,且周长为20, ∴AE=5,∵BD=24,∴EF=8, ,AO=3,AC=6(8分), (10分). 24.(本题满分10分)设销售单价为x元(1分),根据题意得: (4分),解得 , (7分).当单价为70元时,应进600件;当单价为80元时,应进400件(9分),答:(略)(10分). 25.(本题满分12分)(1)由△COD的面积为4,得C的坐标为(2,-4),∴ ,∴ (2分); ∵OA=OD,OD=2,∴AO=2,∴A点坐标为(-2,0), ∴ ,∴ ,∴y=-x-2 (4分);(2)过点B作BE⊥x轴于点E,则AE=BE,设AE=m,则B(-2-m,m),有m(2+m)=8,解得m=2,所以B(-4,2).或令 ,∴ , ,∴B点的坐标为(-4,2)(6分),观察图象可知,不等式k1x+b≤ 的解集为-4≤x2或y1<0 (12分,两个范围各2分). 26.(本题满分14分)(1)①等腰直角;②MP⊥FH,MP= FH;(3分) (2)①∵B、D、M分别是AC、CE、AE的中点,∴MB∥CD,且MB=CD=BC = BF,∴△BMF是等腰三角形(5分); ② 仍然成立.证明:如图,连接MH、MD,设FM与AC交于点Q.由①可知MB∥CD,MB=CD,∴四边形BCDM是平行四边形(6分),∴ ∠CBM =∠CDM. 又∵∠FBQ =∠HDC,∴∠FBM =∠MDH, ∴△FBM ≌ △MDH(7分 ),∴FM = MH, 且∠MFB =∠HMD,∴∠FMH =∠FMD-∠HMD = ∠AQM-∠MFB =∠FBP = 90°,∴△FMH是等腰直角三角形(9分 ). ∵P是FH的中点,∴MP⊥FH,MP= FH(10分 );
数学上册八年级期末考试卷及答案浙教版
这篇数学上册八年级期末考试卷及答案浙教版的文章,是 无 特地为大家整理的,希望对大家有所帮助!
一、选择题(每小题3分,共30分)
1、如图,直线DE截AB,AC,其中内错角有( )对。
A、1 B、2 C、3 D、4
2、在一个不透明的袋子里放入2个红球,3个白球和5个黄球,每个球
除颜色外都相同,曾老师摇匀后随意地摸出一球,这个球是红球或白
球的概率为( )。
A、0.2 B、0.3 C、0.5 D、0.8
3、如图a∥b,∠1=45°,则∠2=( )。
A、45° B、135° C、150° D、50°
4、一个四面体有棱( )条。
A、5 B、6 C、8 D、12
5、下列各图中能折成正方体的是( )。
6、在下面的四个几何体中,它们各自的主视图与左视图可能不相同的是( )。
A B C D
7、为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间的说法错误的是( )。
A、众数是9
B、中位数是9
C、平均数是9
D、锻炼时间不低于9小时的有14人
8、如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分
别是CD、AD上的点,且CE=AF.如果∠AED=62º,那么
∠DBF=( )。
A、62º B、38º C、28º D、26º
9、以下说法:①对顶角相等;②两条平行线中,一条直线上的点到另一条直线的距离叫做这两条平行线之间的距离;③等腰三角形是轴对称图形,顶角平分线是它的对称轴;④角的内部,到角两边距离相等的点,在这个角的平分线上;
⑤直棱柱的相邻两条侧棱互相平行但并不一定相等。
其中正确的个数是( )。
A、2 B、3 C、4 D、5
10、如图,AA′,BB′分别是∠EAB,∠DBC的平分线.
若AA′= BB′=AB,则∠BAC的度数为( )。
A、25º B、30º C、12º D、18º
二、填空题(每小题4分,共24分)
11、如果你把自己的左手手印和右手手印按在同一张白纸上,那么左手手印________(填“能”或“不能”)通过平移与右手手印完全重合。
12、_______________________________________是画三视图必须遵循的法则。
13、为了了解甲型H1N1流感的性质,疾控中心的医务人员对某地区的感染人群进行检测,任意抽取了其中的20名感染者,此种方式属 调查,样本容量是 。
14、在平面内用12根火柴棒首尾顺次相接搭成三角形,能搭成___________个直角三角形,搭成__________个等腰三角形。
15、我们知道正方形的四条边都相等,四个角都等于90度,在正方形ABCD中,以AB为边作正三角形ABE,连结DE,则∠ADE=___________度。
16、如下图1是二环三角形, 可得S=∠A1+∠A2+ … +∠A6=360°, 下图2是二环四边形, 可得S=∠A1+∠A2+ … +∠A7=720°, 下图3是二环五边形, 可得S=1080°, …… 聪明的同学, 请你根据以上规律直接写出二环n边形(n≥3的整数)中,S=___________度(用含n的代数式表示最后结果)。
三、解答题(共66分)
17、本题8分
(1)计算:(-1)2÷12 + (-2)3×34 -(12 )0
(2)计算:[(2x-y)(2x+y)+y(y-6x)]÷(2x)
18、 本题6分
请在下图(单位长度是1)的方格中画出两个以AB为边的三角形ABC,使三角形面积为2.5。(要求:点C在格点上,其中一个为钝角三角形)
19、本题6分
班会课时,老师组织甲、乙两班同学进行投篮比赛,每班各抽5名男生和5名女生进行投篮,每人各投5次(女生投篮处距离篮筐比男生近),成绩记录如下表:
投进篮筐个数 0 1 2 3 4 5
甲班学生数 1 3 1 2 1 2
乙班学生数 0 1 2 4 2 1
根据以上提供的信息回答下列问题
(1)甲、乙两班的投篮平均成绩哪个更好?(2)甲、乙两班的投篮成绩哪个稳定?
20、本题8分
先将代数式 化简,再从 的范围内选取一个合适的整数 代入求值.
21、本题8分
小李将一幅三角板如图所示摆放在一起,发现只要知道其中
一边的长就可以求出其它各边的长,若已知CD=2,
求AC的长。
22、本题8分
如图,四边形ABDC中,AD平分∠BAC,DB=DC,
(1)判断点D到AB与AC的距离关系?并用一句话叙述理由;
(2)试说明△ABC是等腰三角形。
23、本题10分
为了表彰半学期以来学习与行为习惯上表现突出的学生,老师要小明去甲商店或乙商店购买笔记本作为奖品,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖;乙商店的优惠条件是:从第l本开始就按标价的85%卖。
(1)若老师要买20本,则小明该到哪个商店购买较省钱?请说明理由;
(2)若老师要买的笔记本超过10本,请用购买的本数x(本)表示两商店的购书款y(元);
(3)老师交给小明24元钱,问最多可买多少本笔记本?
24、本题12分
如图1,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,E是AB的中点,连结CE并延长交AD于F.
(1)说明:① △AEF≌△BEC;②DF=BC;
(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求AHHC 的值.
参考答案
一、选择题(每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10
答案 D C B B D A D C B C
二、填空题(每小题4分,共24分)
11、 不能 12、 长对正,高平齐,宽相等
13、 抽样 20 14、 1 2
15、 75º或15º 16、360(n-2)
三、解答题
17、本题8分,每小题4分
(1)原式=2-6-1 各1分
=-5 1分
(2)原式= 各1分
= 1分
= 1分
18、本题6分
每幅图3分
19、本题6分
(1)算出甲班平均成绩2.5个和乙班平均成绩3个各得1分,
结论1分;
(2)算出甲班方差38 个2,乙班方差1.2个2各得1分,
结论1分。
20、本题8分
原式= 各2分
= 2分
结果2分
21、本题8分
CD=BD=2 1分
BC2=8 或BC=8 2分
设AC为x后由勾股定理列出方程(12 x)2+8=x2 3分
解出x=323 或x=46 3
即AC=323 2分
22、本题8分
(1)各1分
(2)作DM⊥AB于M,DN⊥AC于N,
得DM=DN 1分
再证出Rt△BMD≌Rt△NDC(HL)
得BM=CN 2分
证出△AMD≌△AND
得AM=AN 2分
所以AB=AC 1分
23、本题10分
(1)算出甲商店买的费用为17元 1分
算出乙商店买的费用为17元 1分
结论 1分
(2)到甲商店的购书款y(元)=10+0.7(x-10)=0.7x+3 2分
到乙商店的购书款y(元)=0.85x 1分
(3)当0.7x+3=24时,x=30 1分
0.85x=24时,x≈28 1分
结论 2分
24、本题12分
(1)证出∠BCE=60º 2分
证出△FEA≌△BEC 2分
(2)由(1)知AF=BC 1分
证出FA=AE 1分
证出DF=BC