知识点:《初中数学题目》 收集:安褐沉 编辑:康乃馨姐姐
本知识点包括:1、初中一年级50道有答案的数学题 2、初中数学应用题 3、初中数学题目 4、100道初中数学计算题及答案 5、免费初中数学试题 。
《初中数学题目》相关知识
初中计算题练习
(-1.5)×(-9)-12÷(-4)
56÷(-7)-2÷5+0.4
3.57×29÷(-4)
5.6÷(-2.8)-(-50)÷2
[9.6+(-7.3)]×[(-5)-(-7)]
12.3÷[5.6+(-1.2)]
(-75.6)÷(1/4+1/5)
9.5×(-9.5)÷1/2
95.77÷(-2)+(-34.6)
(-51.88)÷2-(-5)×24
1.25*(-3)+70*(-5)+5*(-3)+25
9999*3+101*11*(101-92)
(23/4-3/4)*(3*6+2)
3/7 × 49/9 - 4/3
8/9 × 15/36 + 1/27
12× 5/6 – 2/9 ×3
8× 5/4 + 1/4
6÷ 3/8 – 3/8 ÷6
4/7 × 5/9 + 3/7 × 5/9
5/2 -( 3/2 + 4/5 )
7/8 + ( 1/8 + 1/9 )
9 × 5/6 + 5/6
3/4 × 8/9 - 1/3
7 × 5/49 + 3/14
6 ×( 1/2 + 2/3 )
8 × 4/5 + 8 × 11/5
31 × 5/6 – 5/6
9/7 - ( 2/7 – 10/21 )
5/9 × 18 – 14 × 2/7
4/5 × 25/16 + 2/3 × 3/4
14 × 8/7 – 5/6 × 12/15
17/32 – 3/4 × 9/24
3 × 2/9 + 1/3
5/7 × 3/25 + 3/7
3/14 × 2/3 + 1/6
1/5 × 2/3 + 5/6
9/22 + 1/11 ÷ 1/2
5/3 × 11/5 + 4/3
45 × 2/3 + 1/3 × 15
7/19 + 12/19 × 5/6
1/4 + 3/4 ÷ 2/3
8/7 × 21/16 + 1/2
101 × 1/5 – 1/5 × 21
50+160÷40
120-144÷18+35
347+45×2-4160÷52
37×(58+37)÷(64-9×5)
95÷(64-45)
178-145÷5×6+42
812-700÷(9+31×11)
85+14×(14+208÷26)
120-36×4÷18+35
(58+37)÷(64-9×5)
(6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8
(3.2×1.5+2.5)÷1.6
6-1.6÷4= 5.38+7.85-5.37=
7.2÷0.8-1.2×5= 6-1.19×3-0.43=
6.5×(4.8-1.2×4)=
5.8×(3.87-0.13)+4.2×3.74
32.52-(6+9.728÷3.2)×2.5
[(7.1-5.6)×0.9-1.15] ÷2.5
5.4÷[2.6×(3.7-2.9)+0.62]
12×6÷(12-7.2)-6
12×6÷7.2-6
0.68×1.9+0.32×1.9
58+370)÷(64-45)
420+580-64×21÷28
136+6×(65-345÷23)
15-10.75×0.4-5.7
18.1+(3-0.299÷0.23)×1
(6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8
(3.2×1.5+2.5)÷1.6
3.2×6+(1.5+2.5)÷1.6
0.68×1.9+0.32×1.9
10.15-10.75×0.4-5.7
5.8×(3.87-0.13)+4.2×3.74
32.52-(6+9.728÷3.2)×2.5
[(7.1-5.6)×0.9-1.15] ÷2.5
5.4÷[2.6×(3.7-2.9)+0.62]
12×6÷(12-7.2)-6
12×6÷7.2-6
33.02-(148.4-90.85)÷2.5
76.(25%-695%-12%)*36
77./4*3/5+3/4*2/5
78.1-1/4+8/9/7/9
79.+1/6/3/24+2/21
80./15*3/5
81.3/4/9/10-1/6
82./3+1/2)/5/6-1/3]/1/7
83./5+3/5/2+3/4
84.(2-2/3/1/2)]*2/5
85.+5268.32-2569
86.3+456-52*8
87.5%+6325
88./2+1/3+1/4
89+456-78
5%+. 3/7 × 49/9 - 4/3
9 × 15/36 + 1/27
2× 5/6 – 2/9 ×3
3× 5/4 + 1/4
94÷ 3/8 – 3/8 ÷6
95/7 × 5/9 + 3/7 × 5/9
6/2 -( 3/2 + 4/5 )
8 + ( 1/8 + 1/9 )
8 × 5/6 + 5/6
1/4 × 8/9 - 1/3
10 × 5/49 + 3/14
1.5 ×( 1/2 + 2/3 )
2/9 × 4/5 + 8 × 11/5
3.1 × 5/6 – 5/6
4/7 - ( 2/7 – 10/21 )
19 × 18 – 14 × 2/7
5 × 25/16 + 2/3 × 3/4
4 × 8/7 – 5/6 × 12/15
7/32 – 3/4 × 9/24
2/3÷1/2-1/4×2/5
2-6/13÷9/26-2/3
2/9+1/2÷4/5+3/8
10÷5/9+1/6×4
1/2×2/5+9/10÷9/20
5/9×3/10+2/7÷2/5
1/2+1/4×4/5-1/8
3/4×5/7×4/3-1/2
23-8/9×1/27÷1/27
8×5/6+2/5÷4
1/2+3/4×5/12×4/5
8/9×3/4-3/8÷3/4
5/8÷5/4+3/23÷9/11
1.2×2.5+0.8×2.5
8.9×1.25-0.9×1.25
12.5×7.4×0.8
9.9×6.4-(2.5+0.24)
(27) 6.5×9.5+6.5×0.5
0.35×1.6+0.35×3.4
0.25×8.6×4
6.72-3.28-1.72
0.45+6.37+4.55
5.4+6.9×3-(25-2.5)
2×41846-620-380
4.8×46+4.8×54
0.8+0.8×2.5
1.25×3.6×8×2.5-12.5×2.4
28×12.5-12.5×20
23.65-(3.07+3.65)
(4+0.4×0.25)8×7×1.25
1.65×99+1.65
27.85-(7.85+3.4)
48×1.25+50×1.25×0.2×8
7.8×9.9+0.78
(1010+309+4+681+6)×12
3×9146×782×6×854
5.15×7/8+6.1-0.60625
3/7 × 49/9 - 4/3
8/9 × 15/36 + 1/27
12× 5/6 – 2/9 ×3
8× 5/4 + 1/4
6÷ 3/8 – 3/8 ÷6
4/7 × 5/9 + 3/7 × 5/9
5/2 -( 3/2 + 4/5 )
7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
3/4 × 8/9 - 1/3
7 × 5/49 + 3/14
6 ×( 1/2 + 2/3 )
8 × 4/5 + 8 × 11/5
31 × 5/6 – 5/6
9/7 - ( 2/7 – 10/21 )
5/9 × 18 – 14 × 2/7
4/5 × 25/16 + 2/3 × 3/4
14 × 8/7 – 5/6 × 12/15
17/32 – 3/4 × 9/24
3 × 2/9 + 1/3
5/7 × 3/25 + 3/7
3/14 × 2/3 + 1/6
1/5 × 2/3 + 5/6
9/22 + 1/11 ÷ 1/2
5/3 × 11/5 + 4/3
45 × 2/3 + 1/3 × 15
7/19 + 12/19 × 5/6
1/4 + 3/4 ÷ 2/3
8/7 × 21/16 + 1/2
101 × 1/5 – 1/5 × 21
50+160÷40 (58+370)÷(64-45)
120-144÷18+35
347+45×2-4160÷52
(58+37)÷(64-9×5)
95÷(64-45)
178-145÷5×6+42 420+580-64×21÷28
812-700÷(9+31×11) (136+64)×(65-345÷23)
85+14×(14+208÷26)
(284+16)×(512-8208÷18)
120-36×4÷18+35
(58+37)÷(64-9×5)
(6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8
(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
6-1.6÷4
5.38+7.85-5.37
7.2÷0.8-1.2×5
6-1.19×3-0.43
47.6.5×(4.8-1.2×4)
0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
51.[(7.1-5.6)×0.9-1.15] ÷2.5
52.5.4÷[2.6×(3.7-2.9)+0.62]
53.12×6÷(12-7.2)-6 (4)12×6÷7.2-6
102×(-4.5)-(-3)×(-5) ÷2
7.8×6.9+2.2×6.9
(-2)+2-(-52)×(-1) ×5+87÷(-3)×(-1)
5.6×0.258×(20-1.25)
(-7.1) ×〔(-3)×(-5)〕÷2
-2.5×(-4.8)×(0.09)÷(-0.27)
127+352+73+44×(-2)
89×276+(-135)-33
25×71+75÷29 -88÷(-2)
243+89+111+57
9405-2940÷28×21
920-1680÷40÷7
690+47×52-398
148+3328÷64-75
360×24÷32+730
2100-94+48×54
51+(2304-2042)×23
4215+(4361-716)÷81
(247+18)×27÷25
36-720÷(360÷18)
1080÷(63-54)×80
(528+912)×5-6178
8528÷41×38-904
264+318-8280÷69
(174+209)×26- (9000^0)
814-(278+322)÷15
1406+735×9÷45
3168-7828÷38+504
796-5040÷(630÷7)
285+(3000-372)÷36
1+5/6-19/12
3x(-9)+7x(-9)
(-54)x1/6x(-1/3)
1.18.1+(3-0.299÷0.23)×1
2.(6.8-6.8×0.55)÷8.5
3.0.12× 4.8÷0.12×4.84
3.2×1.5+2.5÷(-1.6)
(-2)×3.2×(1.5+2.5)÷1.6
5.6-1.6÷4+(6.8-9)
5.38+7.85-5.37÷89
6.7.2÷0.8-1.2×5
6-1.19×3-0.43
7.6.5×(4.8-1.2×4)
0.68×1.9+0.32×1.9
8.10.15-10.75×0.4-5.7
9.5.8×(3.87-0.13)
(-8.01)+4.2×3.74
10.32.52-(6+9.728÷3.2)×2.5
11.[(7.1-5.6)×0.9-1.15] ÷2.5
12.5.4÷[2.6×(3.7-2.9)+0.62]
13.12×6÷(12-7.2)-6
14.12×6÷7.2-6
15.33.02-(148.4-90.85)÷2.5
(-5)-252×(-78)
(-6) ×(-2)+3÷(5+50)
7-7+3-6-(-90)
(-8)(-3)×(-8)×25
(7+13) ÷(-616)÷(-28)
(8+14-100-27)÷4
(-15) ÷(-1)-101÷10
16÷0.21×(-8) ×(4.1+5.9)
(-10) ×(-2) ×4÷{-9÷[6+(-5.67)]}
(-18)(-4)2×[8.01×(-3.14)
9-32{-890-[79+8.1] ×9}
(-20)-23+(-9) ×9.42
(-24)3.4×104÷(-5) ×200.96
[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)
5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1) +√9
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2) ×2^7
(5+3/8*8/30/(-2)- √36
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
1+2+3+4+.+100000
1/1+1/2+1/3+.1/50
1+1/2+1/4+1/8+1/16+.1/512
3+9+27+81+243+.9999
1+1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
8-2×32-(-2×3)2
–12 × (-3)2-(-1/2)2003×(-2)2002÷2/9
(0.5-3/2)÷3/1×[-2-(-3)3]-∣1/8-0.52∣
[-38-(-1)7+(-3)8]×-53
a^3-2b^3+ab(2a-b)-√a-b^2
15*(-8)+2b^2+
(x^2+y^2)^2-4y(x^2+y^2)+4y^2
6-3a^8-(-5^2-6)
(x^2+2x)^2+3(x^2+2x)+x^2+2x+3
(a+1)(a+2)+(2a+1)(a-2)-12
x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
3(a+2)^2+28(a+2)-20
(a+b)^2-(b-c)^2+a^2-c^2
8x(x+1)(x^2+x-1)-2
x^2(x-1)^2-3(x^2-x)-56
14a(a-b)+(a-b)^2
11.-ab(a-b)^+a(b-a)^2
12.3(x+2)-2x=5-4x
13.5(x+2a)-a=2(b-2x)+4a
3.14*3.42 (2)972*3.14*1/4
[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)
5+21*8/2-√121-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(|-2|-5^4)
(1/3+2/3)/1/2-|-9+(-5)|
18-6/(-3)*(-2)-|-9|
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
|-3x+2y-5x-7y|-|-9x+2y|
-5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3-√64-5^2
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3+√9
-3x+2y-5x-7y+
-5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y-(-3^2+5^7)
-1+2-3+4-5+6-7+√9
-50-28+(-24)-(-22)
-19.8-(-20.3)-(+20.2)-10.8;
0.25- +(-1 )-(+3 ).
-1-23.33-(+76.76)
1-2*2*2*2-5^2+(6^2-5^2)
(-6-24.3)-(-12+9.1)+(0-2.1)
-1+8-7+5^7-(-5+√9)
125*3+125*5+25*3+25
9999*3+101*11*(101-92)
(23/4-3/4)*(3*6+2)
3/7 × 49/9 - 4/3
8/9 × 15/36 + 1/27
12x*5/6y–2/9y*|3x-2y|
8×5/4+1/4*|-7-8|
6÷ 3/8 – 3/8 ÷6
4/7 × 5/9 + 3/7 × 5/9
5/2 -( 3/2 + 4/5 )
7/8 + ( 1/8 + 1/9 )
9 × 5/6 + 5/6
3/4 × 8/9 - 1/3
7 × 5/49 + 3/14
6 ×( 1/2 + 2/3 )
8 × 4/5 + 8 × 11/5
31 × 5/6 – 5/6
9/7 - ( 2/7 – 10/21 )
5/9 × 18 – 14 × 2/7
4/5 × 25/16 + 2/3 × 3/4
14 × 8/7 – 5/6 × 12/15
17/32 – 3/4 × 9/24
3^45 × 2/9 + 1/3
5/7 × 3/25 + 3/7
3/14 ×2/3 + 1/6
1/5 × 2/3 + 5/6
5/3 × 11/5 + 4/3
9/22+1/11÷1/2-√169
45^8 × 2/3 + 1/3 × 15
7/19 + 12/19 × 5/6
1/4 + 3/4 ÷ 2/3
8/7 × 21/16 + 1/2
101^4×(-1/5–1/5×21)
50+√160÷40^5
120-144÷18+35
347+45×2-4160÷52
37^2(58+37)÷(64-9×5)
95÷(64-45)
178-145÷5×6+42
812-700÷(9+31×11)
85+14×(14+208÷26)
120-36×4÷18+35
(58+37)÷(64-9×5)
(6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8
(3.2×1.5+2.5)÷1.6
6-1.6÷4= 5.38+7.85-5.37=
7.2÷0.8-1.2×5= 6-1.19×3-0.43=
6.5×(4.8-1.2×4)=
5.8×(3.87-0.13)+4.2×3.74
32.52-(6+9.728÷3.2)×2.5
[(7.1-5.6)×0.9-1.15] ÷2.5
5.4÷[2.6×(3.7-2.9)+0.62]
12×6÷(12-7.2)-6
12×6÷7.2-6
0.68×1.9+0.32×1.9
58+370)÷(64-45)
420+580-64×21÷28
136+6×(65-345÷23)
15-10.75×0.4-5.7
18.1+(3-0.299÷0.23)×1
(6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8
(3.2×1.5+2.5)÷1.6
3.2×6+(1.5+2.5)÷1.6
0.68×1.9+0.32×1.9
10.15-10.75×0.4-5.7
5.8×(3.87-0.13)+4.2×3.74
32.52-(6+9.728÷3.2)×2.5
[(7.1-5.6)×0.9-1.15] ÷2.5
5.4÷[2.6×(3.7-2.9)+0.62]
12×6÷(12-7.2)-6
12×6÷7.2-6
33.02-(148.4-90.85)÷2.5
76.(25%-695%-12%)*36
7/4*3/5+3/4*2/5
1-1/4+8/9/7/9
7+1/6/3/24+2/21
8/15*3/5
3/4/9/10-1/6
8/3+1/2)/5/6-1/3]/1/7
9/5+3/5/2+3/4
8^6(2-2/3/1/2)]*2/5
8+5268.32-2569
3+456-52*8
87.5%+6325
8/2+1/3+1/4
89+456-78
5%+. 3/7 × 49/9 - 4/3
9 × 15/36 + 1/27
2× 5/6 – 2/9 ×3
3× 5/4 + 1/4
94÷ 3/8 – 3/8 ÷6
95/7 × 5/9 + 3/7 × 5/9
6/2 -( 3/2 + 4/5 )
8 + ( 1/8 + 1/9 )
8 × 5/6 + 5/6
1/4 × 8/9 - 1/3
10× 5/49 + 3/14
1.5 ×( 1/2 + 2/3 )
2/9 × 4/5 + 8 × 11/5
3.1 × 5/6 – 5/6
4/7 - ( 2/7 – 10/21 )
19 × 18 – 14 × 2/7
5 × 25/16 + 2/3 × 3/4
4 × 8/7 – 5/6 × 12/15
7/32 – 3/4 × 9/24
2/3÷1/2-1/4×2/5
2-6/13÷9/26-2/3
2/9+1/2÷4/5+3/8
10÷5/9+1/6×4
1/2×2/5+9/10÷9/20
5/9×3/10+2/7÷2/5
1/2+1/4×4/5-1/8
3/4×5/7×4/3-1/2
23-8/9×1/27÷1/27
18×5/6+2/5÷4
11/2+3/4×5/12×4/5
8/9×3/4-3/8÷3/4
5/8÷5/4+3/23÷9/11
1.2×2.5+0.8×2.5
8.9×1.25-0.9×1.25
12.5×7.4×0.8
9.9×6.4-(2.5+0.24)
6.5×9.5+6.5×0.5
0.35×1.6+0.35×3.4
0.25×8.6×4
6.72-3.28-1.72
0.45+6.37+4.55
5.4+6.9×3-(25-2.5)
2×41846-620-380
4.8×46+4.8×54
0.8+0.8×2.5
1.25×3.6×8×2.5-12.5×2.4
28×12.5-12.5×20
23.65-(3.07+3.65)
(4+0.4×0.25)8×7×1.25
1.65×99+1.65
27.85-(7.85+3.4)
48×1.25+50×1.25×0.2×8
7.8×9.9+0.78
(1010+309+4+681+6)×12
3×9146×782×6×854
5.15×7/8+6.1-0.60625
3/7 × 49/9 - 4/3
8/9 × 15/36 + 1/27
12× 5/6 – 2/9 ×3
8× 5/4 + 1/4
6÷ 3/8 – 3/8 ÷6
4/7 × 5/9 + 3/7 × 5/9
5/2 -( 3/2 + 4/5 )
7/8 + ( 1/8 + 1/9 )
9 × 5/6 + 5/6
3/4 × 8/9 - 1/3
7 × 5/49 + 3/14
6 ×( 1/2 + 2/3 )
8 × 4/5 + 8 × 11/5
31 × 5/6 – 5/6
9/7 - ( 2/7 – 10/21 )
5/9 × 18 – 14 × 2/7
4/5 × 25/16 + 2/3 × 3/4
14 × 8/7 – 5/6 × 12/15
17/32 – 3/4 × 9/24
3 × 2/9 + 1/3
5/7 × 3/25 + 3/7
3/14 × 2/3 + 1/6
1/5 × 2/3 + 5/6
9/22 + 1/11 ÷ 1/2
5/3 × 11/5 + 4/3
45 × 2/3 + 1/3 × 15
7/19 + 12/19 × 5/6
1/4 + 3/4 ÷ 2/3
8/7 × 21/16 + 1/2
101 × 1/5 – 1/5 × 21
50+160÷40 (58+370)÷(64-45)
120-144÷18+35
347+45×2-4160÷52
(58+37)÷(64-9×5)
95÷(64-45)
178-145÷5×6+42 420+580-64×21÷28
812-700÷(9+31×11)
(136+64)×(65-345÷23)
85+14×(14+208÷26)
(284+16)×(512-8208÷18)
120-36×4÷18+35
(58+37)÷(64-9×5)
(6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8
(3.2×1.5+2.5)÷1.6
3.2×(1.5+2.5)÷1.6
6-1.6÷4= 5.38+7.85-5.37=
7.2÷0.8-1.2×5= 6-1.19×3-0.43=
6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
10.15-10.75×0.4-5.7
5.8×(3.87-0.13)+4.2×3.74
32.52-(6+9.728÷3.2)×2.5
[(7.1-5.6)×0.9-1.15] ÷2.5
5.4÷[2.6×(3.7-2.9)+0.62]
12×6÷(12-7.2)-6 (4)12×6÷7.2-6
102^2×4.5+8^5-√529
7.8×6.9+2.2×6.9
5.6×0.25
8×(20-1.25)
127+352+73+44
89+276+135+33
25+71+75+29 +88
243+89+111+57
9405-2940÷28×21
920-1680÷40÷7
690+47×52-398
148+3328÷64-75
360×24÷32+730
2100-94+48×54
51+(2304-2042)×23
4215+(4361-716)÷81
(247+18)×27÷25
36-720÷(360÷18)
1080÷(63-54)×80
(528+912)×5-6178
8528÷41×38-904
264+318-8280÷69
(174+209)×26- 9000
814-(278+322)÷15
1406+735×9÷45
3168-7828÷38+504
796-5040÷(630÷7)
285+(3000-372)÷36
1+5/6-19/12
3x(-9)+7x(-9
(-54)x1/6x(-1/3)
18.1+(3-0.299÷0.23)×1
(6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8
(3.2×1.5+2.5)÷1.6
3.2×(1.5+2.5)÷1.6
5.6-1.6÷4
5.38+7.85-5.37
7.2÷0.8-1.2×5
6-1.19×3-0.43
6.5×(4.8-1.2×4)
0.68×1.9+0.32×1.9
115-10.75×0.4-5.7
5.8×(3.87-0.13)+4.2×3.74
32.52-(6+9.728÷3.2)×2.5
[(7.1-5.6)×0.9-1.15] ÷2.5
5.4÷[2.6×(3.7-2.9)+0.62]
12×6÷(12-7.2)-6
12×6÷7.2-6
33.02-(148.4-90.85)÷2.5
二.解方程
2x=7(x-5)
8(3x+3)=240
4.74+4x-2.5x=8.1
(2.81+x)÷2.81=1
15x-30=16(x-2)
(-3)^3-3^3
(-1)^2-5.6
2^2+3^3-4^4
(2^4-3^2)^3-5^5
[(1.6^2-2^3)-2.1]^2
(5.66×2)^2-15^2
(-15)^x=225,x=?
[(-4)^2-4^2]×2^2
[(-5.6)^2+3]^2
[5.6^2+(-5.6)^2]×(-1)^2
3x+28-x=56
1.5x+6=3.75
2(3.6x+2.8)=-1.6
9.5x+9.5=19
18(x-35)=-36
x+7-(-36+8^2)/2=8+7^4/3
a-7-98+7a=3.2*5a
89/2+35/6x=3*9+2^3/5+7x
3X+189/3=521/2
4Y+119*^3=22/11
3X*189=5*4^5/3
8Z/6=458/5
3X+77=59
4Y-6985=81
87X*13=5
7Z/93=41
15X+863-65X=54
58Y*55=27489
7(2x-1)-3(4x-1)=4(3x+2)-1
(5y+1)+ (1-y)= (9y+1)+ (1-3y)
[-6(-7^4*8)-4]=x+2
20%+(1-20%)(320-x)=320×40%
2(x-2)+2=x+1
2(x-2)-3(4x-1)=9(1-x)
11x+64-2x=100-9x
15-(8-5x)=7x+(4-3x)
3(x-7)-2[9-4(2-x)]=22
3/2[2/3(1/4x-1)-2]-x=2
2x+7^2=157
1)判断题:
判断下列方程是否是一元一次方程:
①-3x-6x2=7( )
③5x+1-2x=3x-2 ( )
④3y-4=2y+1. ( )
判断下列方程的解法是否正确:
①解方程3y-4=y+3
3y-y=3+4,2y=7,y=3.5
②解方程:0.4x-3=0.1x+2
0.4x+0.1x=2-3;0.5x=-1,x=-2
③解方程
5x+15-2x-2=10,3x=-3,x=-1;
④解方程
2x-4+5-5x=-1,-3x=-2,x= .( )
2)填空题:
(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠_
(2)关于x的方程ax=3的解是自然数,则整数a的值为_
(3)方程5x-2(x-1)=17 的解是_
(4)x=2是方程2x-3=m- 的解,则m=_ .
(5)若-2x2-5m+1=0 是关于x的一元一次方程,则m=_ .
(6)当y=_ 时,代数式5y+6与3y-2互为相反数.
(7)当m=_ 时,方程 的解为0.
(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为______ .
3)选择题:
(1)方程ax=b的解是( ).
A.有一个解x= B.有无数个解
C.没有解 D.当a≠0时,x=
(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )
A.方程两边都乘以4,得3( x-1)=12
B.去括号,得x- =3
C.两边同除以 ,得 x-1=4
D.整理,得
(3)方程2- 去分母得( )
A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7
C.12-2(2x-4)=-(x-7) D.以上答案均不对
(4)若代数式 比 大1,则x的值是( ).
A.13 B. C.8 D.
(5)x=1.5是方程( )的解.
A.4x+2=2x-(-2-9)
B.2{3[4(5x-1)-8]-2}=8
C.4x+9 =6x+6
4)解答下列各题:
(1)x等于什么数时,代数式 的值相等?
(2)y等于什么数时,代数式 的值比代数式 的值少3?
(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?
(4)解下列关于x的方程:
①ax+b=bx+a;(a≠b);
三.化简、化简求值
化间求值:
1、-9(x-2)-y(x-5)
(1)化简整个式子.
(2)当x=5时,求y的解.
2、5(9+a)×b-5(5+b)×a
(1)化简整个式子.
(2)当a=5/7时,求式子的值.
3、62g+62(g+b)-b
(1)化简整个式子.
(2)当g=5/7时,求b的解.
4、3(x+y)-5(4+x)+2y
(1)化简整个式子.
5、(x+y)(x-y)
(1)化简整个式子.
6、2ab+a×a-b
(1)化简整个式子.
7、5.6x+4(x+y)-y
(1)化简整个式子.
8、6.4(x+2.9)-y+2(x-y)
(1)化简整个式子.
9、(2.5+x)(5.2+y)
(1)化简整个式子.
10、9.77x-(5-a)x+2a
(1)化简整个式子.
把x=-2, y=0.1, a=4, b=1代入下列式子求值
3(x+2)-2(x-3)
5(5+a)×b-5(5+b)×a
62a+62(a+b)-b
3(x+y)-5(4+x)+2y
(x+y)(x-y)
2ab+a×a-b
5.6x+4(x+y)-y
6.4(x+2.9)-y+2(x-y)
(2.5+x)(5.2+y)
9.77x-(5-a)x+2a
知识拓展:
1:12又3/4÷1又1/5+5.25×5/6=?139×137/138+137×1又1/138=?
知识要点归纳:
=139x137/138+137x139/138
=139x137x2/138
=(138+1)(138-1)x2/138
=(138-1/138)x2
=276-1/69
2:【小华在假期探望外祖母,他坐火车时发现,每经过铁轨接头处,车身都要振动一次他还发现,火车进山洞前的一瞬间要鸣笛一次,小华恰好坐车尾,从听到笛声到车尾出洞小华共数出84次车身振动,所】
知识要点归纳:
山洞长x米,火车速度y米/秒,得
x+175-175y/(340+y)=12.5*84
105y=12.5/84
y=10米/秒
x=880米
注:175是所用时间化成了分的形式
3:【关于初中数学应用题>】
知识要点归纳:
1题:设家生产百分率是X,乙是Y
因为甲乙两生产值在2006年的百分率都是一样的,所以第一个式子是200(1+X)+300(1-y)=480,同理第二个式子就是200(1+X)(1+X)+300(1-Y)(1-Y)=558最后算出{X=50% Y=40%答.
2题:设甲货物X立方米,乙货物Y立方米
方程1:X+Y=700方程2:0.4X+(Y/2)=300最后算出X=500立方米Y=200立方米
又因为换算单位是吨,所以甲货物是200吨,乙货物是100吨
答.
3题:设进货时的单价是X元 所以一共进(300/X)千克,
所以据原题可知:其余苹果有(300/x-10)千克
其余苹果出售价格为(X+2)元根据最后一个条件可知:,(300/x-30)(x+2)+20*0.6(x+2)-300=110所以X=3元答.
以后的我就不祥写了
4题设乙树苗的单价是X元甲树苗的单价是(X-2)元
则[2400/(X-2)]-(200/X)=200
5题太简单了想一想就能做出来不就不多说了
4:由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3:2,两队合做6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两
知识要点归纳:
(1)设甲队单独完成此项工程需x天,(1分)
由题意得
+6 x
=16 2x 3
解之得x=15(4分)
经检验,x=15是原方程的解.(5分)
答:甲队单独完成此项工程需15天,
乙队单独完成此项工程需15×
2 |
3 |
(2)甲队所得报酬:20000×
1 |
15 |
乙队所得报酬:20000×
1 |
10 |
5:guiqiu
知识要点归纳:
【预测题】1、已知,在平行四边形OABC中,OA=5,AB=4,∠OCA=90°,动点P从O点出发沿射线OA方向以每秒2个单位的速度移动,同时动点Q从A点出发沿射线AB方向以每秒1个单位的速度移动.设移动的时间为t秒.
(1)求直线AC的解析式;
(2)试求出当t为何值时,△OAC与△PAQ相似;
(3)若⊙P的半径为 ,⊙Q的半径为 ;当⊙P与对角线AC相切时,判断⊙Q与直线AC、BC的位置关系,并求出Q点坐标.
(1)
(2)①当0≤t≤2.5时,P在OA上,若∠OAQ=90°时,
故此时△OAC与△PAQ不可能相似.
当t>2.5时,①若∠APQ=90°,则△APQ∽△OCA,
∵t>2.5,∴ 符合条件.
②若∠AQP=90°,则△APQ∽△∠OAC,
∵t>2.5,∴ 符合条件.
综上可知,当 时,△OAC与△APQ相似.
(3)⊙Q与直线AC、BC均相切,Q点坐标为( ).
【预测题】2、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
(1) ; .(2)在 中, ,
.
设点 的坐标为 ,其中 , 顶点 ,
∴设抛物线解析式为 .
①如图①,当 时, , .
解得 (舍去); . . .解得 .
抛物线的解析式为
②如图②,当 时, , .
解得 (舍去).
③当 时, ,这种情况不存在.
综上所述,符合条件的抛物线解析式是 .
(3)存在点 ,使得四边形 的周长最小.
如图③,作点 关于 轴的对称点 ,作点 关于
轴的对称点 ,连接 ,分别与 轴、 轴交于
点 ,则点 就是所求点.
, .
. .又 , ,此时四边形 的周长最小值是 .
【预测题】3、如图,在边长为2的等边△ABC中,AD⊥BC,点P为边AB 上一个动点,过P点作PF//AC交线段BD于点F,作PG⊥AB交AD于点E,交线段CD于点G,设BP=x.
(1)①试判断BG与2BP的大小关系,并说明理由;
②用x的代数式表示线段DG的长,并写出自变量x的取值范围;
(2)记△DEF的面积为S,求S与x之间的函数关系式,并求出S的最大值;
(3)以P、E、F为顶点的三角形与△EDG是否可能相似?如果能相似,请求出BP的长,如果不能,请说明理由.
(1)①在等边三角形ABC中,∠B=60°,∵PG⊥AB,
∴∠BGP=30°,∴BG=2BP.
②∵PF//AC,∴△PBF为等边三角形,∴BF=PF=PB=x.
又∵BG=2x,BD=1,∴DG=2x-1,∴0<2x-1≤1,∴ .
(2)S= DE×DF=
=
当 时, .
(3)①如图1,若∠PFE=Rt∠,则两三角形相似,
此时可得DF=DG
即
解得: .
②如图2,若∠PEF=Rt∠,则两三角形相似,
此时可得DF= EF= BP,
即 .解得: .
【预测题】4、如图,二次函数 的图像经过点 ,
且与 轴交于点 .
(1)试求此二次函数的解析式;
(2)试证明: (其中 是原点);
(3)若 是线段 上的一个动点(不与 、 重合),过 作 轴的平行线,分别交此二次函数图像及 轴于 、 两点,试问:是否存在这样的点 ,使 ?若存在,请求出点 的坐标;若不存在,请说明理由.
(1)∵点 与 在二次函数图像上,
∴ ,解得 ,
∴二次函数解析式为 .
(2)过 作 轴于点 ,由(1)得 ,则在 中, ,又在 中, ,
∵ ,∴ .
(3)由 与 ,可得直线 的解析式为 ,
设 ,则 ,
∴ .∴ .
当 ,解得 (舍去),∴ .
当 ,解得 (舍去),∴ .
综上所述,存在满足条件的点,它们是 与 .
【预测题】5、如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒 ,△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.
(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;
(3)在图2中,点G是x轴正半轴上一点(0<OG<6=,过G作EF垂直于x轴,分别交y1、y2于点E、F.
①说出线段EF的长在图1中所表示的实际意义;
②当0<x<6时,求线段EF长的最大值.
(1)∵ ,CD=3,CQ=x,∴ .
图象如图所示.
(2)方法一: ,CP=8k-xk,CQ=x,
∴ .∵抛物线顶点坐标是(4,12),
∴ .解得 .则点P的速度每秒 厘米,AC=12厘米.
方法二:观察图象知,当x=4时,△PCQ面积为12.
此时PC=AC-AP=8k-4k=4k,CQ=4.∴由 ,得 .
解得 .则点P的速度每秒 厘米,AC=12厘米.
方法三:设y2的图象所在抛物线的解析式是 .
∵图象过(0,0),(4,12),(8,0),
∴ 解得 ∴ . ①
∵ ,CP=8k-xk,CQ=x,∴ . ②
比较①②得 .则点P的速度每秒 厘米,AC=12厘米.
(3)①观察图象,知线段的长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ面积).②由⑵得 .(方法二, )
∵EF=y2-y1,∴EF= ,
∵二次项系数小于0,∴在 范围,当 时, 最大.
【预测题】6、如图,在 中, , 、 分别是边 、
上的两个动点( 不与 、 重合),且保持 ,以 为边,在点 的异侧作正方形 .
(1)试求 的面积;
(2)当边 与 重合时,求正方形 的边长;
(3)设 , 与正方形 重叠部分的面积为 ,试求 关于 的函数关系式,并写出定义域;
(4)当 是等腰三角形时,请直接写出 的长.
(1)过 作 于 ,∵ ,∴ .
则在 中, ,∴ .
(2)令此时正方形的边长为 ,则 ,解得 .
(3)当 时, .
当 时, .
(4) .
【预测题】7、如图已知点A (-2,4) 和点B (1,0)都在抛物线 上.
(1)求 、n;
(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;
(3)记平移后抛物线的对称轴与直线AB′ 的交点为点C,试在 轴上找点D,使得以点B′、C、D为顶点的三角形与 相似.
(1)根据题意,得: 解得
(2)四边形A A′B′B为菱形,则A A′=B′B= AB=5
∵
=
∴ 向右平移5个单位的抛物线解析式为
(3)设D(x,0)根据题意,得:AB=5,
∵∠A=∠B B′A
ⅰ) △ABC∽△B′CD时,∠ABC=∠B′CD ,∴BD=6-x, 由 得 解得x=3, ∴D(3,0)
ⅱ)△ABC∽△B′DC时,
∴ 解得 ∴
【预测题】8、如 图,已知直角梯形ABCD中,AD‖BC,A B⊥BC ,AD=2,AB=8,
CD=10.
(1)求梯形ABCD的面积S;
(2)动点P从点B出发,以1cm/s的速度、沿B→A→D→C方向,向点C运动;动点Q从点C出发,以1cm/s的速度、沿C→D→A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由;
②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
在Rt△DCH中,
(2)①
经计算,PQ不平分梯形ABCD的面积
②
, -
【预测题】9、如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为( ,0), CAB=90°,AC=AB,顶点A在⊙O上运动.
(1)当点A在x轴上时,求点C的坐标;
(2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;
(3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值;
(4)当直线AB与⊙O相切时,求AB所在直线对应的函数关系式.
(1)当点A的坐标为(1,0)时,AB=AC= -1,点C的坐标为(1, -1);
当点A的坐标为(-1,0)时,AB=AC= +1,点C的坐标为(-1, +1);
(2)直线BC与⊙O相切,过点O作OM⊥BC于点M,∴∠OBM=∠BOM=45°,
∴OM=OB•sin45°=1,∴直线BC与⊙O相切
(3)过点A作AE⊥OB于点E
在Rt△OAE中,AE2=OA2-OE2=1-x2,
在Rt△BAE中,AB2=AE2+BE2=(1-x2) +( -x)2=3-2 x
∴S= AB•AC= AB2= (3-2 x)=
其中-1≤x≤1,
当x=-1时,S的最大值为 ,
当x=1时,S的最小值为 .
(4)①当点A位于第一象限时(如右图):
连接OA,并过点A作AE⊥OB于点E
∵直线AB与⊙O相切,∴∠OAB=90°,
又∵∠CAB=90°,∴∠CAB+∠OAB=180°,
∴点O、A、C在同一条直线上,∴∠AOB=∠C=45°,
在Rt△OAE中,OE=AE= .点A的坐标为( , )
过A、B两点的直线为y=-x+ .
②当点A位于第四象限时(如右图)
点A的坐标为( ,- ),过A、B两点的直线为y=x- .
【预测题】10、已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB
猜你喜欢:
1:初中一年级50道有答案的数学题
提示:一、填空题(每小题3分,共24分) 1.(-1)2002-(-1)2003=_________________. 答案:2 2.已知某数的 比它大 ,若设某数为x,则可列方程_______________. 答案: x=x+ 3.如图1,点A、B、C、D在直线l上.则BC=_________-CD,AB+________+CD=A...
2:初中数学应用题
提示:25天,16小时。 (1)甲每天生产:10÷5=2,乙每天生产:9÷3=3,125÷(2+3)=25天。 (2)假设工作量为1(总的工作量),则甲每小时做1/40,乙每小时做1/30,乙先做2个小时就是1/30×2=2/30。 然后设x为两人合作时间:2/30+(1/40+1/30)x=1(...
3:初中数学题目
提示:好吧,给你一道几何题目吧,比较有难度:已知圆O中的弦PQ的中点为M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,证明M为XY的中点(这道题目我有答案)
4:100道初中数学计算题及答案
提示:①5√8-2√32+√50 =5*3√2-2*4√2+5√2 =√2(15-8+5) =12√2 ②√6-√3/2-√2/3 =√6-√6/2-√6/3 =√6/6 ③(√45+√27)-(√4/3+√125) =(3√5+3√3)-(2√3/3+5√5) =-2√5+7√5/3 ④(√4a-√50b)-2(√b/2+√9a) =(2√a-5√2b)-2(√2b/2+3√a) =-4√a-6√2b ⑤√4x*(√3x/2-√x/6) =2√x(√6x...
5:免费初中数学试题
提示:这里有http://hi.baidu.com/%B9%C9%C3%F1%5F%D0%A1%BB%A7/blog/item/f7c32018e9ce370334fa41b6.html 而且很全 数学、物理、化学都有哦 不过要下载 十字交叉双乘法没有公式,一定要说的话 那就是利用x^2+(p+q)x+pq=(x+q)(x+p)其中PQ为常数。x^2是...