本一大一新生学不会高数怎么办?
认真听课,因为在课堂上有老师为我们整理思路。串讲知识点,同时在课堂上,如果我们遇到问题可以及时提问,困惑的地方得到立即解答,所以认真听课是最高效的学习方法。课堂也拥有着十分利于学习利于思考的氛围。其次就是做好笔记,无论是自己学习还是在课堂上跟着老师学习,做笔记都能帮助我们加深记忆,整理思路。数学是一个十分考验逻辑思维能力的学科,所以理清思路十分重要,把课本内容整理成笔记其实是一个把外在灌输的知识内化成自己的思想的过程。课堂上老师基本不会给你时间消化和练习,而课后自己会不会练习也还得另说。本要在知识内容方面上了一个档次,又不能多加练习,高数也就自然而然成了众多大学生的噩梦。注意事项:另外不会的高数去问老师或者同学,在老师下课以后去问老师。高数最重要的还是要肯花时间,把自己薄弱的知识点及时搞懂。很多知识点是和前一个知识点互相联系的,如果说前一个知识点都没搞清楚那么新的知识点也是搞不懂的,只要你肯花时间下去,相信你还是可以学好的。
大一新生如何学好高等数学
高等数学是面向普通高等院校本科生开设的一门数学课程,学起来有着较大的难度,大一新生该如何把这门课程学好呢?本文是我为大家整理的大一新生学好高等数学的 方法 ,欢迎阅读!
大一新生学好高等数学的方法一:迅速完成两个转变
大一新同学在第一个学期要通过个人努力尽快完成两个转变。
一是 学习方法 的转变
中学数学与高等数学的不同在于:中学数学主要研究常量,而高等数学主要研究变量,二者的内容及其蕴含的方法都有本质不同,这就决定了大学的学习方法与中学一定有所区别。事实上,中学数学主要以充分的练习为主,对概念的理解要求并不高,解题基本上采取模式辨认、方法回忆的 思维方式 ,对解题方法和技巧模仿、记忆和套用,大部分学生没有进行数学思考的习惯,也没有掌握数学思考的方法。因此说,中学的学习,学生是在教师的直接指导下进行模仿和单一性的学习。而学习高等数学必须重视概念的来源、概念的出发点以及与之相关的某些具体应用,要求学生在教师的指导下进行创造性的学习,即以课堂上老师所讲的重点和难点为线索,通过大量地阅读教材和同类参考书,充分消化和掌握课堂上所学内容,然后通过习题、个人复习加以巩固。因此,大一新同学在学习上要主动与老师、学长沟通交流,及时吸取别人的 经验 ,尽快完成学习方法上的转变。
二是学习心理的转变
中学的学习,很多情况下是在教师或家长不断鞭策、不断监督下的被动学习。中学数学教学普遍重教学轻学习,重知识轻能力,重模仿轻创新,教师很多的精力用于通过大量的题目演练来培养学生的技能技巧,并及时进行辅导和巩固,对学生的督促较紧。而在大学,教师主要起指导作用,教师更注重严密性和逻辑性,强调对概念、原理的掌握,对思想方法的深刻理解,学生独立应用时未必有例可循,学生的学习是自觉的主动行为,习题演练也更多是个人行为。所以大一新同学在学习上要尽快摆脱依赖老师的心理,有学习或思想上的问题应该自己主动与老师(而不是老师找自己!)交流,及时获得指导。
能够在松散的环境下约束自己,主动、自觉地学习,做学习的主人,这样才能尽快掌握所学,才能把所学的东西学扎实。
大一新生学好高等数学的方法二:尽快做到三个学会
一是要尽快学会听课
这个问题新同学会觉得不以为然,认为自己上了十几年学,还能不会听课?但是对高等数学的初学者来说,确实存在一个会不会听课的问题。
学习高等数学,对于课堂上教师讲的知识,最重要的是获得整体的认识,而不要拘泥于每个细节是否清楚。在教师证明定理或推导公式时,要特别注意理解其中的思路。只要掌握了思路的主线,即使某些细节没听清楚,也没关系。因为自己完全能在这个思路主线的引导下将证明的整个过程内化为自己的东西。我们知道,任何一位听课者,都不能保证自己在一节课的全部时间内都能做到精力集中、全神贯注。所以,课堂上合理分配自己的注意力就显得非常重要:在听定理证明思路时一定做到自己思想要跟着老师的讲解走。
而要做到课堂上注意力的合理分配,课前的预习就显得分外重要。通过预习,对所要学习的内容,有个大致印象,听课时就可以看一下自己预习中的理解跟老师讲解的有何区别,有哪些问题应该与老师或同学进行讨论等。只有通过预习才能把所要学习的内容中的难点、重点有个初步认识,从而使自己成为课堂学习过程中的积极参与者而不是旁观者。
二是要尽快学会自学
21世纪的大学生,是肩负知识创新使命的未来科技人才,应当主动培养自学能力和学习的主动精神。一定程度上的自我学习,是学好高等数学的关键。自学要处理好以下几个关系:
1、复习与做题的关系。要改变那种听课以后就做题,把能否解题作为衡量学习好坏标准的做法。高等数学中的思想方法仅仅靠埋头做题是不可能掌握好的,复习要在听课后及时进行,这样印象深刻、效率高。事实上复习的过程就是主动思考的过程、是将来科研能力的培养过程。
2、想与问的关系。高等数学学习中的问,提倡的是基于独立思考的问。在学习中钻得越深,就越能发现问题。充分利用答疑时间,争取得到老师的帮助。同时学习高等数学,问的不应该是具体的习题,而是该习题所对应的知识点。一道题不能解出,说明该题所对应的知识点没掌握好。如果不知道该题所对应的知识点,那就说明该知识点的具体应用方法没掌握好。
3、教材与参考书的关系。复习应该以教材、笔记为主,同时辅以参考书。看参考书对丰富所学内容、培养自学能力都很有好处。但看参考书应该配合学习进度,带着明确的目的去看所需内容,而后把收获充实在笔记当中。
4、计划性与灵活性的关系。在高等数学的学习中,加强计划性是一个有效的 措施 。新同学应该主动向老师询问授课计划,这样每周都可以制定下一周的 学习计划 。学习计划留有余地,在执行中才有灵活性,才能根据具体情况进行适当调整。这样,随着经验的积累,以后制定的计划将越来越符合自己的实际。 大一新生学好高等数学的方法三:要尽快学会 总结
高等数学都学什么?
高等数学主要内容包括:极限、微积分、空间解析几何与向量代数、级数、常微分方程。指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。扩展资料:高等数学课程分为两个学期进行学习。它的教学内容包含了一元函数微积分、多元函数微积分、空间解析几何与向量代数初步、微分方程初步、场论初步等。在学习这些高等数学的内容的时候,很多的同学表示犯难,的确,因为这些都是在高中课程的基础上完善的,想要更好的学好高等数学这门学科,在高中时候的积累显得特别的重要。参考资料:百度百科——高等数学
高等数学学什么
问题一:高数主要学习些什么? 积分很重要,你如果还没�接触过高数,自学下那块内容,以后学起来会轻松不少的……
积分是基础,都是靠做题找感觉,练出来的,一定时候就能找到做题的灵感
高数对严格的定理证明的要求不高,重在公式和方法的应用
问题二:大学高数学什么? 包含线代,概率,高数,但是考核内容要不同于数学一,具体可参见大纲。适用学科为:
经济学门类中除上述规定憨必考数学三的二级学科、专业外,其余的二级学科、专业可选用数学三或数学四;管理学门类的工商管理一级学科中除上述规定的必考数学三的二级学科、专业外,其余的二级学科专业可选用数学三或数学四.管理学门类的农林经济管理一级学科中对数学要求较低的二级学科、专业.
问题三:学习高等数学有什么用处? 网友发帖询问高等数学的用途,这个问题回答起来颇为不易,主要原因倒不是用途不清,而是用途太多了,多到这样文章n篇也说不完的地步。敝人不才,愿意抛砖引玉,和大家一起探讨。
高等数学这个词是从苏联引进的,欧洲作为高等数学的发源地,并没有这样的说法。这个高等是相对于几何(平面、立体,解析)与初等代数而言,从目前的一般高校教学,高等数学主要指微积分。一般理工科本科学生,还需要学习更多一些,包括概率论和数理统计,线性代数,复变函数,泛函分析等等,这些都可以放到高等数学范畴里面。当然,这些只是现代数学的最基本的基础,不过,即使是这个基础,就可以应付很多现实的任务。
这里只说说微积分,一言而蔽之,微积分是研究函数的一个数学分支。函数是现代数学最重要的概念之一,描述变量之间的关系,为什么研究函数很重要呢?还要从数学的起源说起。各个古文明都掌握一些数学的知识,数学的起源也很多很多,但是一般认为,现代数学直承古希腊。古希腊的很多数学家同时又是哲学家,例如毕达哥拉斯,芝诺,这样数学和哲学有很深的亲缘关系。古希腊的最有生命力的哲学观点就是世界是变化的(德谟克利特的河流)和亚里斯多德的因果观念,这两个观点一直被人广泛接受。前面谈到,函数描述变量之间的关系,浅显的理解就是一个变了,另一个或者几个怎么变,这样,用函数刻画复杂多变的世界就是顺理成章的了,数学成为理论和现实世界的一道桥梁。
微积分理论可以粗略的分为几个部分,微分学研究函数的一般性质,积分学解决微分的逆运算,微分方程(包括偏微分方程和积分方程)把函数和代数结合起来,级数和积分变换解决数值计算问题,另外还研究一些特殊函数,这些函数在实践中有很重要的作用。这些理论都能解决什么问题呢?下面先举两个实践中的例子。
举个最简单的例子,火力发电厂的冷却塔的外形为什么要做成弯曲的,而不是像烟囱一样直上直下的?其中的原因就是冷却塔体积大,自重非常大,如果直上直下,那么最下面的建筑材料将承受巨大的压力,以至于承受不了(我们知道,地球上的山峰最高只能达到3万米,否则最下面的岩石都要融化了)。现在,把冷却塔的边缘做成双曲线的性状,正好能够让每一截面的压力相等,这样,冷却塔就能做的很大了。为什么会是双曲线,用于微积分理论5分钟之内就能够解决。
我相信读者在看这篇文章的时候是在使用电脑,计算机内部指令需要通过硬件表达,把信号转换为能够让我们感知的信息。前几天这里有个探讨算法的帖子,很有代表性。Windows系统带了一个计算器,可以进行一些简单的计算,比如算对数。计算机是计算是基于加法的,我们常说的多少亿次实际上就是指加法运算。那么,怎么把计算对数转换为加法呢?实际上就运用微积分的级数理论,可以把对数函数转换为一系列乘法和加法运算。
这个两个例子牵扯的数学知识并不太多,但是已经显示出微积分非常大的力量。实际上,可以这么说,基本上现代科学如果没有微积分,就不能再称之为科学,这就是高等数学的作用。
数学是软件开发的基础,有许多学数学的最后都转行搞软件.
问题四:高等数学基础主要学哪些 想考试的话,学好函数基本就能过去了,其实数学很有意思,但是高等数学的思想并不一样,这点得注意,高中的数学都是一种绝对的,有限的概念,高等数学需要一种想像力,别硬学,会把脑子用坏的。高等数学大多用来解决实际问题,除了锻炼思维以外。
问题五:高等数学包含哪些内容,有哪些科目 你好!内容包含:
一、 函数与极限
二、导数与微分
三、导数的应用
四、不定积分
五、定积分及其应用
六、空间解析几何
七、多元函数的微分学
八、多元函数积分学
九、常微分方程
十、无穷级数
主要包括的科目有:微积分,数理统计等。
其实,高中就有涉及,高数只是深化了一些。
谢谢!
问题六:大学里面高等数学都学的什么啊 一般大学的高等数学主要内容就是微积分这门课程。这里给出当前卖得最火的《高等数学》同济大学第六版的目录为例:
第一章 函数与极限
第一节 映射与函数
第二节 数列的极限
第三节 函数的极限
第四节 无穷小与无穷大
第五节 极限运算法则
第六节 极限存在准则 两个重要极限
第七节 无穷小的比较
第八节 函数的连续性与间断点
第九节 连续函数的运算与初等函数的连续性
第十节 闭区间上连续函数的性质
总习题一
第二章 导数与微分工第一节 导数概念
第二节 函数的求导法则
第三节 高阶导数
第四节 隐函数及由参数方程所确定的函数的导数 相关变化率
第五节 函数的微分
总习题二
第三章 微分中值定理与导数的应用
.第一节 微分中值定理
第二节 洛必达法则
第三节 泰勒公式
第四节 函数的单调性与曲线的凹凸性
第五节 函数的极值与最大值最小值
第六节 函数图形的描绘
第七节 曲率
第八节 方程的近似解
总习题三
第四章 不定积分
第一节 不定积分的概念与性质
第二节 换元积分法
第三节 分部积分法
第四节 有理函数的积分
第五节 积分表的使用
总习题四
第五章 定积分
第一节 定积分的概念与性质
第二节 微积分基本公式
第三节 定积分的换元法和分部积分法
第四节 反常积分
第五节 反常积分的审敛法 函数
总习题五
第六章 定积分的应用
第一节 定积分的元素法
第二节 定积分在几何学上的应用
第三节 定积分在物理学上的应用
总习题六
第七章 微分方程
第一节 微分方程的基本概念
第二节 可分离变量的微分方程
第三节 齐次方程
第四节 一阶线性微分方程
第五节 可降阶的高阶微分方程
第六节 高阶线性微分方程
第七节 常系数齐次线性微分方程
第八节 常系数非齐次线性微分方程
第九节 欧拉方程
第十节 常系数线性微分方程组解法举例
问题七:学高等数学有什么用啊 这个就是高等数学的各个分支的作用,总之肯定有用的。你说没有用是你的水平没有达到那个水平而已
实变函数(实分析):数学分析的加强版之一。主要应用于经济学等注重数据分析的领域。
复变函数(复分析):数学分析加强版之二。应用很广的一门学科,在航空力学、流体力学、固体力学、信息工程、电气工程等领域都有广泛的应用,所以工科学生都要学这门课的。
高等代数,主要包括线形代数和多项式理论。线形代数可以说是目前应用很广泛的数学分支,数据结构、程序算法、机械设计、电子电路、电子信号、自动控制、经济分析、管理科学、医学、会计等都需要用到线形代数的知识,是目前经管、理工、计算机专业学生的必修课程。
高等几何:包括空间解析几何、射影几何、球面几何等,主要应用在建筑设计、工程制图方面。
分析学、高等代数、高等几何是近代数学的三大支柱。
微分方程:包括常微分方程和偏微分方程,重要工具之一。流体力学、超导技术、量子力学、数理金融、材料科学、模式识别、信号(图像)处理 、工业控制、输配电、遥感测控、传染病分析、天气预报等领域都需要它。
泛函分析:主要研究无限维空间上的函数。因为比较抽象,在技术上的直接应用不多,一般应用于连续介质力学、量子物理、计算数学、控制论、最优化理论等理论。
近世代数(抽象代数):主要研究各种公理化抽象代数系统的。技术上没有应用,物理上用得比较多,尤其是其中的群论。
拓扑学:研究 *** 在连续变换下的不变性。在自然科学中应用较多,如物理学的液晶结构缺陷的分类、化学的分子拓扑构形、生物学的DNA的环绕和拓扑异构酶等,此外在经济学中也有很重要的应用。
泛函分析、近世代数、拓扑学是现代数学三大热门分支。
非欧几何:主要应用在物理上,最著名的是相对论。
数论:曾经被认为是数学家的游戏、唯一不会有什么应用价值的分支。著名的哥德巴赫猜想就是数论里的。现在随着网络加密技术的发展,数论也找到了自己用武之地――密码学。前几年破解MD5码的王小云就是数论出身。
问题八:高数主要学习些什么? 积分很重要,你如果还没�接触过高数,自学下那块内容,以后学起来会轻松不少的……
积分是基础,都是靠做题找感觉,练出来的,一定时候就能找到做题的灵感
高数对严格的定理证明的要求不高,重在公式和方法的应用
问题九:学习高等数学有什么用处? 网友发帖询问高等数学的用途,这个问题回答起来颇为不易,主要原因倒不是用途不清,而是用途太多了,多到这样文章n篇也说不完的地步。敝人不才,愿意抛砖引玉,和大家一起探讨。
高等数学这个词是从苏联引进的,欧洲作为高等数学的发源地,并没有这样的说法。这个高等是相对于几何(平面、立体,解析)与初等代数而言,从目前的一般高校教学,高等数学主要指微积分。一般理工科本科学生,还需要学习更多一些,包括概率论和数理统计,线性代数,复变函数,泛函分析等等,这些都可以放到高等数学范畴里面。当然,这些只是现代数学的最基本的基础,不过,即使是这个基础,就可以应付很多现实的任务。
这里只说说微积分,一言而蔽之,微积分是研究函数的一个数学分支。函数是现代数学最重要的概念之一,描述变量之间的关系,为什么研究函数很重要呢?还要从数学的起源说起。各个古文明都掌握一些数学的知识,数学的起源也很多很多,但是一般认为,现代数学直承古希腊。古希腊的很多数学家同时又是哲学家,例如毕达哥拉斯,芝诺,这样数学和哲学有很深的亲缘关系。古希腊的最有生命力的哲学观点就是世界是变化的(德谟克利特的河流)和亚里斯多德的因果观念,这两个观点一直被人广泛接受。前面谈到,函数描述变量之间的关系,浅显的理解就是一个变了,另一个或者几个怎么变,这样,用函数刻画复杂多变的世界就是顺理成章的了,数学成为理论和现实世界的一道桥梁。
微积分理论可以粗略的分为几个部分,微分学研究函数的一般性质,积分学解决微分的逆运算,微分方程(包括偏微分方程和积分方程)把函数和代数结合起来,级数和积分变换解决数值计算问题,另外还研究一些特殊函数,这些函数在实践中有很重要的作用。这些理论都能解决什么问题呢?下面先举两个实践中的例子。
举个最简单的例子,火力发电厂的冷却塔的外形为什么要做成弯曲的,而不是像烟囱一样直上直下的?其中的原因就是冷却塔体积大,自重非常大,如果直上直下,那么最下面的建筑材料将承受巨大的压力,以至于承受不了(我们知道,地球上的山峰最高只能达到3万米,否则最下面的岩石都要融化了)。现在,把冷却塔的边缘做成双曲线的性状,正好能够让每一截面的压力相等,这样,冷却塔就能做的很大了。为什么会是双曲线,用于微积分理论5分钟之内就能够解决。
我相信读者在看这篇文章的时候是在使用电脑,计算机内部指令需要通过硬件表达,把信号转换为能够让我们感知的信息。前几天这里有个探讨算法的帖子,很有代表性。Windows系统带了一个计算器,可以进行一些简单的计算,比如算对数。计算机是计算是基于加法的,我们常说的多少亿次实际上就是指加法运算。那么,怎么把计算对数转换为加法呢?实际上就运用微积分的级数理论,可以把对数函数转换为一系列乘法和加法运算。
这个两个例子牵扯的数学知识并不太多,但是已经显示出微积分非常大的力量。实际上,可以这么说,基本上现代科学如果没有微积分,就不能再称之为科学,这就是高等数学的作用。
数学是软件开发的基础,有许多学数学的最后都转行搞软件.
问题十:高等数学基础主要学哪些 想考试的话,学好函数基本就能过去了,其实数学很有意思,但是高等数学的思想并不一样,这点得注意,高中的数学都是一种绝对的,有限的概念,高等数学需要一种想像力,别硬学,会把脑子用坏的。高等数学大多用来解决实际问题,除了锻炼思维以外。
成人高考数学不会怎么办
首先,要有一个清醒的认识,对于0基础,从来没有学过高数的人来说,真的认真要学一遍,那就太麻烦,也太难了,需要投入大量的时间,精力,而且必须要有人专门讲解,最终结果可能连100分都考不到,但是考试的目的至少尽可能拿多的分数。其次,分析一下试卷,成人高考高数试卷分为选择,填空和答题,选择和填空占了绝大部分的分数,只要把选择和填空尽量保住就可以了,翻一下近五年历年真题,会发现,利用1-2月的时间学习,考个130分,把所有题目都做出来,那是绝对不可能滴,所以,对于成人高考数学考试的基本策略是放弃大题,重点拿分点在选择和填空。最后,复习策略是直接做真题,只要会做一道真题,就会做今年考试的一套真题。目标是最少做对10个选择,2个多选,1-2大题,这样至少可以考80分。具体谈来:(1)找个会高数的朋友,教自己做近五年真题的选择题、填空题和第一、第二道大题,把做题方法都学会。(2)买一套高数教材,让朋友给自己讲讲前三章,难的不看,不好理解的不看,后面的章节一律不看。(3)专题训练,找几套模拟题,按照考试标准练习,只做选择,填空和第一道和第二道大题,其他的题目全部放弃,对于选择里面后面几道和填空最后一道,也可以直接放弃,看看历年真题选哪个答案,直接蒙上(4)考试,考试前充满信心,发下试卷后,浏览全部题目,然后把会做的选择都做完,不会做的选择按照历年真题答案规律蒙一下,填空都做完,不会做的蒙一下,然后答题只做第一道和第二道,后面的会的只做第一问,其他的全部空着,然后回头检查。扩展资料成人高考数学复习 1、对复习内容要分清主次,系统复习与重点复习相结合。(1)代数部分:代数历来是考试中的重点,而函数知识又是代数部分的重中之重。要掌握函数的概念,会求常见函数的定义域及函数值,会用待定系数法求函数解析式,会对函数的奇偶性和单调性进行判定。函数的重点是一次函数、二次函数、指数函数、对数函数的图象和性质。数列是代数部分的又一个重要内容。导数及其应用是近两年考试中的一个突出重点,复习的基本策略是注重运算,强调应用。导数复习的重点是:①会求多项式函数几种常见函数的导数。②利用导数的几何意义求曲线的切线方程,并能以导数为工具求函数的单调区间、极值与最大值或最小值。③解简单的实际应用问题,求最大值或最小值。(2)三角部分:在理解三角函数及有关概念的基础上,要掌握三角函数式的变换,包括同角三角函数之间的基本关系式,三角函数的诱导公式,两角和两角差的三角函数公式,以及二倍角的正弦、余弦、正切公式,并用公式进行计算、化简。同时,要会判断三角函数的奇偶性,会求三角函数的最小正周期和函数的单调增减区间,会求正弦函数、余弦函数的最大值和最小值、值域,尤其要会用正弦定理和余弦定理解三角形。(3)平面解析几何部分:解析几何是通过坐标系及直线、圆锥曲线的方程,用代数的方法研究几何问题。平面向量一章,在理解向量及相关概念的基础上,要重点掌握向量的运算法则,向量垂直与平行的充要条件。直线一章的复习重点是直线的倾斜角和斜率,直线方程的五种形式,两直线的位置关系。要求能根据已知条件来求直线方程,掌握点到直线的距离公式。圆锥曲线一章的复习重点是圆的标准方程和一般方程,直线与圆的位置关系,椭圆、双曲线以及抛物线的标准方程、图形及性质,特别要注意直线与圆锥曲线的位置关系。(4)立体几何部分:近年来,考试大纲对这部分的要求明显降低,考查的重点是直线与直线、直线与平面、平面与平面的各种位置关系,和有关棱柱、棱锥与球体的表面积与体积的计算等基础知识。这表明,考题中出现立体几何证明题的可能性很小,基本上是一些立体几何基本概念题或基本计算题。(5)概率与统计初步:排列与组合一章,应注意分类计数原理与分步计数原理的主要区别,应注意排列与组合的主要区别,牢记排列数或组合数计算公式,会解有关排列或组合的简单实际问题。在概率初步中,重点是求可能事件的概率。在统计初步中,重点是求样本的平均数与方差,及随机变量的数学期望。2、复习时要加强练习,提高能力。逻辑思维能力是数学能力的核心,运算能力则是解决问题的基本能力。近几年成考数学试题大多是常规计算题,运算能力的强弱决定了考试的成败。运算能力还包括使用计算器进行数值计算的能力,考生应通过练习有意识地培养使用计算器进行数值计算的能力。近几年,成人高考数学试题加强了对数学语言(其中包括文字语言、符号语言、图形语言等)的考查,要求考生从阅读数学语言中获取信息,并运用数学语言表达解题的思维过程。通过分析考生的答卷可以发现,因为阅读和使用数学语言的能力薄弱,部分考生读不懂题,不能正确理解题意,不能正确地用数学语言表述解题过程,导致考试中严重失分。在考前复习中,考生要通过适度、适量的练习,不断提高逻辑思维能力、运算能力、空间想象能力以及运用所学数学知识和方法分析问题和解决问题的能力。3、讲究学习方法,提高学习效率。考生要掌握经常出题的知识点,作一定数量的典型题练习,逐步加深对基本概念的理解,熟记基本公式,熟练掌握基本方法,总结解题规律,切切实实提高解题能力。通过练习,要对基本概念、基本理论、基本性质进行由此及彼、由表及里的辨析,注意总结解题方法,举一反三,触类旁通。考生要从自身的实际情况出发,多动脑筋,掌握正确的学习方法,以收到事半功倍的效果。