因式分解十字相乘法

时间:2023-06-13 04:18:19编辑:奇闻君

知识点:因式分解十字相乘法收集:李菇叛 编辑:紫罗兰君
本知识点包括:1、怎么用十字相乘法。十字相乘法口诀是什么 2、十字相乘法公式! 3、利用十字相乘法来解决因式分解,结果的因式如何确... 4、因式分解十字交叉法的方法 5、怎么因式分解 怎么用十字相乘法 。


《因式分解十字相乘法》相关知识

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解.

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.

2、十字相乘法的用处:(1)用十字相乘法来分解因式.(2)用十字相乘法来解一元二次方程.

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错.

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单.2、十字相乘法只适用于二次三项式类型的题目.3、十字相乘法比较难学.

5、十字相乘法解题实例:

1)、 用十字相乘法解一些简单常见的题目

例1把m²+4m-12分解因式

分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题

因为 1 -2

1 ╳ 6

所以m²+4m-12=(m-2)(m+6)

例2把5x²+6x-8分解因式

分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题

因为 1 2

5 ╳ -4

所以5x²+6x-8=(x+2)(5x-4)

例3解方程x²-8x+15=0

分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.

因为 1 -3

1 ╳ -5

所以原方程可变形(x-3)(x-5)=0

所以x1=3 x2=5

例4、解方程 6x²-5x-25=0

分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.

因为 2 -5

3 ╳ 5

所以 原方程可变形成(2x-5)(3x+5)=0

所以 x1=5/2 x2=-5/3

2)、用十字相乘法解一些比较难的题目

例5把14x²-67xy+18y²分解因式

分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7,18y²可分为y.18y ,2y.9y ,3y.6y

因为 2 -9y

7 ╳ -2y

所以 14x²-67xy+18y²= (2x-9y)(7x-2y)

例6 把10x²-27xy-28y²-x+25y-3分解因式

分析:在本题中,要把这个多项式整理成二次三项式的形式

解法一、10x²-27xy-28y²-x+25y-3

=10x²-(27y+1)x -(28y²-25y+3) 4y -3

7y ╳ -1

=10x²-(27y+1)x -(4y-3)(7y -1)

=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)

5 ╳ 4y - 3

=(2x -7y +1)(5x +4y -3)

说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]

解法二、10x²-27xy-28y²-x+25y-3

=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y

=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y

=(2x -7y+1)(5x -4y -3) 2 x -7y 1

5 x - 4y ╳ -3

说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].

例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0

分析:2a²–ab-b²可以用十字相乘法进行因式分解

x²- 3ax + 2a²–ab -b²=0

x²- 3ax +(2a²–ab - b²)=0

x²- 3ax +(2a+b)(a-b)=0 1 -b

2 ╳ +b

[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)

1 ╳ -(a-b)

所以 x1=2a+b x2=a-b

简单的说,十字相乘的原理 是根据 分解因式.

即(ax+b)(cx+d)=acx^2+(bc+ad)x+bd赞同69| 评论

参考思路:

简单的说,十字相乘的原理 是根据 分解因式。

即(ax+b)(cx+d)=acx^2+(bc+ad)x+bd

知识拓展:

1:请讲一讲因式分解中的十字相乘法我指的是第一项的系数不是1的那种,


知识要点归纳:

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解.

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.

2、十字相乘法的用处:(1)用十字相乘法来分解因式.(2)用十字相乘法来解一元二次方程.

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错.

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单.2、十字相乘法只适用于二次三项式类型的题目.3、十字相乘法比较难学.

5、十字相乘法解题实例:

1)、 用十字相乘法解一些简单常见的题目

例1把m²+4m-12分解因式

分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题

因为 1 -2

1 ╳ 6

所以m²+4m-12=(m-2)(m+6)

例2把5x²+6x-8分解因式

分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题

因为 1 2

5 ╳ -4

所以5x²+6x-8=(x+2)(5x-4)

例3解方程x²-8x+15=0

分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.

因为 1 -3

1 ╳ -5

所以原方程可变形(x-3)(x-5)=0

所以x1=3 x2=5

例4、解方程 6x²-5x-25=0

分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.

因为 2 -5

3 ╳ 5

所以 原方程可变形成(2x-5)(3x+5)=0

所以 x1=5/2 x2=-5/3

2)、用十字相乘法解一些比较难的题目

例5把14x²-67xy+18y²分解因式

分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7,18y²可分为y.18y ,2y.9y ,3y.6y

因为 2 -9y

7 ╳ -2y

所以 14x²-67xy+18y²= (2x-9y)(7x-2y)

例6 把10x²-27xy-28y²-x+25y-3分解因式

分析:在本题中,要把这个多项式整理成二次三项式的形式

解法一、10x²-27xy-28y²-x+25y-3

=10x²-(27y+1)x -(28y²-25y+3) 4y -3

7y ╳ -1

=10x²-(27y+1)x -(4y-3)(7y -1)

=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)

5 ╳ 4y - 3

=(2x -7y +1)(5x +4y -3)

说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]

解法二、10x²-27xy-28y²-x+25y-3

=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y

=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y

=(2x -7y+1)(5x -4y -3) 2 x -7y 1

5 x - 4y ╳ -3

说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].

例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0

分析:2a²–ab-b²可以用十字相乘法进行因式分解

x²- 3ax + 2a²–ab -b²=0

x²- 3ax +(2a²–ab - b²)=0

x²- 3ax +(2a+b)(a-b)=0 1 -b

2 ╳ +b

[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)

1 ╳ -(a-b)

所以 x1=2a+b x2=a-b

2:【如何进行十字相乘法来因式分解请举几个例子,并且写出过程,谢谢!】


知识要点归纳:

例1

把2x^2-7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=1×2=2×1; 分解常数项:3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:1 1 ╳ 2 3 1×3+2×1 =5 1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 2x^2-7x+3=(x-3)(2x-1).一般地,对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:a1 c1  ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax2+bx+c=(a1x+c1)(a2x+c2).像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.

例2

把6x^2-7x-5分解因式.分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 ╳ 3 -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用十字相乘法分解因式.解 6x^2-7x-5=(2x+1)(3x-5) 指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是 1 -3 ╳ 1 5 1×5+1×(-3)=2 所以x^2+2x-15=(x-3)(x+5).

例3

把5x^2+6xy-8y^2分解因式.分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 ╳ 5 -4 1×(-4)+5×2=6 解 5x^2+6xy-8y^2=(x+2y)(5x-4y).指出:原式分解为两个关于x,y的一次式.

例4

把(x-y)(2x-2y-3)-2分解因式.分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y) ^2-3(x-y)-2 1 -2 ╳ 2 1 1×1+2×(-2)=-3 =[(x-y)-2][2(x-y)+1] =(x-y-2)(2x-2y+1).指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.

例5

x^2+2x-15 分析:常数项(-15)

3:因式分解(十字相乘法)6a^4-5a^3-4a^24a^6-37a^4b^2+9a^2b^4(x^2-3)^2-4x^2(3x^2+2x+1)^2-(2x^2+3x+3)^2


知识要点归纳:

6a^4-5a^3-4a^2

=a^2(6a^2-5a-4)

=a^2(3a-4)(2a+1)

4a^6-37a^4b^2+9a^2b^4

=a^2(4a^4-37a^2b^2+9b^4)

=a^2(4a^2-b^2)(a^2-9b^2)

=a^2(2a+b)(2a-b)(a+3b)(a-3b)

(x^2-3)^2-4x^2

=(x^2-3-2x)(x^2-3+2x)

=(x-3)(x+1)(x-1)(x+3)

(3x^2+2x+1)^2-(2x^2+3x+3)^2

=(3x^2+2x+1+2x^2+3x+3)(3x^2+2x+1-2x^2-3x-3)

=(5x^2+5x+4)(x^2-x-2)

=(5x^2+5x+4)(x-2)(x+1)

4:【十字相乘法因式分解1、4X^4-65X^2Y^2+16Y^42、X^4-5X^2-363、a^6-7a^3b^3-8b^6】


知识要点归纳:

1、4X^4-65X^2Y^2+16Y^4

1 -16

×

4 -1

原式=(X²-16Y²)(4X²-Y²)

=(X+4Y)(X-4Y)(2X+Y)(2X-Y)

2、X^4-5X^2-36

1 -9

×

1 4

原式=(X²-9)(X²+4)

=(X+3)(X-3)(X²+4)

3、a^6-7a^3b^3-8b^6

1 -8

×

1 1

原式=(a³-8b³)(a³+b³)

=(a-2b)(a²+2ab+4b²)(a+b)(a²-ab+b²)

5:初中数学代数用十字相乘法因式分解6x²-5x-2512x²-13x+36x²+19x+105x²-8x-13


知识要点归纳:

6x²-5x-25 =(2x-5)(3x+5)

12x²-13x+3 =(3x-1)(4x-3)

6x²+19x+10 =(3x-2)(2x-5)

5x²-8x-13=(5x-13)(x+1)

猜你喜欢:

1:怎么用十字相乘法。十字相乘法口诀是什么

提示:1、十字相乘法的方法: 十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处: (1)用十字相乘法来分解因式。 (2)用十字相乘法来解一元二次方程。 十字相乘法的优点: 用十字相乘法来解题...

2:十字相乘法公式!

提示:要有耐心哦~ 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相...

3:利用十字相乘法来解决因式分解,结果的因式如何确...

提示:十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数. 十字相乘法能把某些二次三项式分解因式.这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c...

4:因式分解十字交叉法的方法

提示:1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的...

5:怎么因式分解 怎么用十字相乘法

提示:十字相乘法一般用于分解二次三项式三次三项式一般用拆项,减项先提公共的因式,再像 二次那样因式分解. 因式分解的步骤: 1.提取公因式这个是最基本的.就是有公因式就提出来。(相同取出来剩下的相加或相减) 2.完全平方看到式字内有两个数平方就...

上一篇:美国演员

下一篇:恩菲尔德事件