汞污染的污染来源
人类活动造成水体汞污染,主要来自氯碱、塑料、电池、电子等工业排放的废水以及废旧医疗器械。据估计,1970~1979年全世界由于人类活动直接向水体排放汞的总量约1.6万吨;排向大气的总汞量达10万吨左右;排入土壤总汞约为10万吨,而排向大气和土壤的也将随着水循环回归入水体。由于天然本底情况下汞在大气、土壤和水体中均有分布,所以汞的迁移转化也在陆、水、空之间发生。大气中气态和颗粒态的汞随风飘散,一部分通过湿沉降或干沉降落到地面或水体中。土壤中的汞可挥发进入大气,也可被降水冲淋进入地面水和渗透入地下水中。地面水中的汞一部分由于挥发而进入大气,大部分则沉淀进入底泥。底泥中的汞,不论呈何种形态,都会直接或间接地在微生物的作用下转化为甲基汞或二甲基汞。二甲基汞在酸性条件可以分解为甲基汞。甲基汞可溶于水,因此又从底泥回到水中。水生生物摄入的甲基汞,可以在体内积累,并通过食物链不断富集。受汞污染水体中的鱼,体内甲基汞浓度可比水中高上万倍,危及鱼类并通过食物链危害人体。节能灯和荧光灯“我国作为全球汞使用量和排放量最大的国家,在‘全球汞文书’谈判中面临着巨大的汞减量减排压力。”环保部化学品登记中心副研究员菅小东透露,2012年7月,联合国环境规划署召集的政府间谈判委员会第四次会议召开。代表们对具有法律约束力的全球汞公约(简称“全球汞文书”)的草案进一步谈判,削减汞的供应、减少产品和工艺对汞的需求以及减少汞的国际贸易仍是谈判过程中的重点领域。 在节能灯逐步替代白炽灯成为趋势之际,节能灯汞污染引发社会各方关注。业内资深专家表示,细管径的T5、T8等直管荧光灯和环形荧光灯由于使用手工注汞工艺,更容易出现汞含量超标。环保部相关专家表示,环保部正在筹划制定加强添汞产品及相关行业汞污染防治工作的政策,拟禁止批复使用液态汞和手动注汞的荧光灯生产新建、改建、扩建项目。 节能灯的发光原理就是汞蒸气受激发而发光,所以每支节能灯都含汞。即便按欧洲最新环保标准,一支节能灯的汞含量也约为3--5 毫克。一旦破碎,仅3毫克就会污染约1000 吨水、300立方米的空气!中国年消耗节能灯多达8亿只,随着全世界范围内取消白炽灯,节能灯产量将会大幅度增加。预计在2015年左右,仅中国市场节能灯的年需求量可达20亿只左右。据专家预测,即使按照500万只废弃灯管中有一半的汞废物可浸入地下来计算,也会形成每年约4.5亿吨水的污染潜能,这一数字远远超过北京所有家庭一年的用水总量。那么,20亿支相当于每年约1800亿吨水的污染潜能,相当于污染400个规模等同于北京城市所有家庭一年的用水总量。根据国务院发布的节能减排综合性工作方案,国家发改委正在积极实施“绿色照明”工程,通过财政补贴的方式向全国推广高效照明产品1.5亿只。按照预测,这项工程实施后,全国一年可累计节电290亿千瓦时,少排放二氧化碳2900万吨、二氧化硫29万吨。然而,假如未考虑到这1.5亿只节能灯的善后工作,任由使用者随意废弃,那就意味着将有数十吨汞进入自然环境,理论上将污染270亿吨水资源,而全球便于取用的淡水才只有3000亿吨。若再加上大气、土壤、动植物等受到的连带伤害,这项工程最终的得失恐怕就不好算了。雪上加霜的是,在国家大力宣传推广节能灯产品的背景下,大量滥竽充数的劣质节能灯搭便车充斥市场,造成扰乱市场、浪费能源、加重污染的多重危害。近些年节能灯一直背负着“节电不节钱”的恶名,最主要的原因就是市场上的节能灯产品质量低下。2010年元旦前后广东省质监局进行了一次节能灯产品市场抽查,结果显示有近8成不合格。而同期湖北省发布的抽检结果显示,当地市场节能灯产品的合格率也仅为33.3%。人们知道,劣质节能灯寿命很短,因此淘汰率就大大提高了,这就意味着,进入环境的废旧节能灯数量增加,汞污染也就加重了。本来被寄予了美好希望的节能灯,却要背负起沉重的环保债务,这实在令人尴尬。恰是因为对节能灯环保问题的忽视,建立废旧节能灯专业回收机构,对其进行安全无害处理的工作也一直没人来做。负责推广节能灯产品的各地经贸部门,大都没有关于废旧节能灯回收的计划,主要是没有切实可行的回收办法。节能灯作为节能减排的有效手段被政府广泛推广。 我国已经宣布在2012年终止白炽灯的生产。但我们必须清醒的认识到节能灯背后的隐患,废旧节能灯的回收刻不容缓,只有整合社会各界资源才可能有效防止废旧节能灯的汞污染。深圳市作为低碳示范区,为了呼吁广大民市能共同加入废旧节能灯汞防治工作,试点推行“租灯-回收”——“押金出租-上门服务-环保回收”的节能灯“只‘租’不卖”环保模式,把节能灯推广与节能灯汞污染捆绑施实,避免了“先发展,后治理”的路子。节能灯破碎处理作为顾客仅仅能接触到汞的时候是在灯有裂缝或破碎的时候。如果发生这种情况,请根据以下规则减少与汞的接触:不要惊慌。记住荧光灯里的汞含量非常小 。小心不要让玻璃碎片划伤自己。如果灯是在照明情况下破损,确认断电避免触电的危险。收集好碎片,如果可能把他们扫集在一起。用可处理的毛巾或者粘贴带来清除碎片。只有没有办法处理好地面(如毛毯)才用真空清洁器清理。然后在处理装有碎片的清洁器的真空袋。再把真空袋里的碎片放在垃圾袋里从家里拿走带到郊外。让房间通气。请正确处理破碎的和功能不正常的灯。医疗器械长期以来,汞产品在人们的生活中随处可见。比如一个小的电开关、电池、荧光灯、电脑的各部分、一些测量仪器、水银温度计、血压计等医疗器械以及牙科中广泛使用的汞合金等等。据相关资料介绍,卫生保健部门所使用的汞虽然并不是全球人为汞排放的最主要来源,但由于这些含汞器械、设备与人们日常生活接触很多,又容易被各界所忽略,就成为一个值得密切关注的汞污染源。根据中国医疗器械行业协会的统计,我国每年约生产1.2亿支充汞式体温计,按照每支含汞量1g计算,仅此一项,年用汞量就可达120吨。若将水银血压计也考虑在内,我国医疗卫生领域的汞消费总量非常惊人。可以想象,如果这些含汞器械发生意外破损,在没有采取防范措施的情况下就会给人们的健康直接造成危害;而且,如果疏于管理,汞废气物将通过焚化、固体废弃物或废水等形式流入环境,造成当地甚至更大区域的危害。但是,公众对于汞污染的后果及其自我防护认知水平还很低。据一家医院对护士进行的问卷调查,对于外漏汞,认为不用处理的占6%;将漏出汞就地倒出者占52%;有3%的护士认为汞滴好玩,曾经用手去触摸汞滴;27%的护士将漏出汞直接倒入垃圾桶;4%的人倒入下水道;有8%的人将汞用注射器吸取后注回血压计。
汞是以什么形态存在的
地球岩石圈内汞的丰度约0.03ppm。自然环境中汞的本底值不高,森林土壤约为0.029~0.10ppm,耕作土壤约为0.03~0.07ppm,粘质土壤约为0.03~0.034ppm。土壤中的汞含量与土壤的形成过程及利用情况有关。
随着人类生产活动的不断发展,土壤中的汞含量也在逐渐地发生变化。汞及汞化物广泛地用在制碱、催化、仪表等工业中,因此含汞废水、废碴等均可进入土壤。含汞农药的使用则更直接地使土壤受到汞污染。
汞在土壤中的行为主要表现在土壤对汞的固定和释放作用上。汞的固定和释放受土壤条件的影响和制约。如土壤中腐殖质和粘粒的含量不同,对汞的固定作用也呈现出明显的差异。土壤中的腐殖质对汞有很大的亲和性,尤其在pH值较低时,汞更易于为土壤有机物所吸收。当pH值偏高时,土壤中矿物质对汞的吸附作用相应地增强。
土壤去除有机质后,对汞的固定作用会下降。由于土壤对汞有固定作用,使得土壤中相当一部分汞转化为难溶的汞,不易为植物吸收,起到固定贮存的作用。因此可以说,土壤是汞的一个巨大的储存库。
在一定的条件下,土壤中固定态的汞还可能释放出来,转变为易于被作物吸收的可给态汞。
汞的释放不是单纯的化学过程,而是一个复杂的生物化学过程。用黄土作水稻和小麦的盆栽试验表明,作物各个生长时期,可给态的汞量是不同的,如拔节期达14.4ppb,齐穗期为6ppb。最后作物中的含汞量可高达205ppb。土壤中汞的固定和释放以及作物吸收汞的过程可概括如下:
土壤中汞的固定与释放随条件不同而相互转化。为了减少汞对粮食的污染,往往对土壤采取适当的技术措施,使土壤中可给态的汞转化为固定态的汞。例如,施用磷肥一方面可增加土壤的磷素营养,同时还与土壤中的可给态汞作用而生成难溶性的磷酸汞,起固定汞的作用。施用含硫的有机肥料或者硫酸铵,在还原性条件下,也可将土壤中的汞转化为难溶的硫化汞。此外,在酸性土壤中施用石灰来调节土壤的酸度,也有利于形成难溶性的氧化汞。
汞在自然界分布很广,但一般丰度不高。水体中的汞浓度约在ppb级的水平。如河水中的汞浓度为1.0ppb,海水中约为0.3ppb,雨水中约为0.2ppb等。但是,受污染的水中浓度往往很高。污染水体中的汞主要来自工业排放的废水以及汞矿床的扩散等。
汞在水体中的存在形态与水体的氧化还原特性密切相关。汞在水体中可能存在的化学价态有零价的元素汞( Hg0)、一价的汞( Hg+)、二价的汞( Hg2+)。主要是元素汞和二价汞。由于汞有很高的电离势,因此它转化为离子的倾向小于其它金属。在水体还原性较高的区域中,汞不仅以硫络合物及沉淀存在,而且还可以还原为金属汞。在一般情况下,水体中的汞主要是金属汞、氯化汞和氢氧化汞。
水体中的无机汞可随着水的流动作迁移运动,或沉降于水底并吸附在底泥中。在微生物作用下,无机汞能够转化为有机汞,即主要转化为一甲基汞和二甲基汞。这就是所谓汞的甲基化作用。汞的甲基化作用可在厌氧条件下发生,也可在好氧条件下发生。在厌氧条件下,主要转化为二甲基汞。
二甲基汞难溶于水,但它具有挥发性,易于逸散到大气中。在弱酸性的水环境中,二甲基汞还可转化为一甲基汞;在好氧条件下,则主要转化为一甲基汞。一甲基汞是水溶性物质,易于被生物吸收而进入食物链。
当汞排入水体后,其中的一部分为硅藻等浮游生物吸收,而硅藻又是飞蛄等小昆虫的食物,汞于是随硅藻进入昆虫体内并积蓄起来。昆虫死亡后,沉入河底,成为石斑鱼等底层鱼的饵料,汞再次被富集。鳝鱼等食肉鱼类又以石斑鱼为食,于是再一次进行富集。最后,使鲶鱼体内的含汞量可高达50~60毫克/千克。比原来水体中的浓度高万倍以上,比一般鱼类体内含汞量亦高900多倍。一般来说,汞通过食物链富集可使某些生物体内的含汞量比水体中的浓度增加几倍至几十万倍。一般水生生物食物链是:浮游植物→浮游动物→贝类、虾、小鱼→大鱼。我国第二松花江汞污染也较严重,鱼体含汞平均达0.74毫克/干克。渔民含汞量已达到水误病患者的低限水平。这是一个很值得重视的问题。
汞可通过吸入、饮水和食物摄入,其中最主要的是通过食物链摄入。由于甲基汞能在食物链中被高度浓集,因此,即使环境中甲基汞的浓度异常低微,通过食物链后,也能将较大量的甲基汞输送到人体内,从而造成巨大危害。
汞在体外与硫化物有高度亲和性,可结合成不溶解的硫比汞。汞进入人体后,也有类似的特性。汞离子与体内的流基(-SH)有很强的亲和性,结合形成巯醇盐。体内含巯基最多的是蛋白质,如脑的灰质部分含量最多,因此汞也就最易积存在大脑中,引起以神经损害为主的病症。
急性汞中毒常由于误食含汞物质引起,表现为腹痛、呕吐、水和电解质丧失及休克等。若吸入高浓度的汞则可发生胸痛、咳嗽、呼吸困难等症状。
慢性汞中毒多由职业性接触引起,表现为神经系统症状和胃肠道反应。
环境污染导致的中毒以甲基汞中毒最为重要。由于甲基汞主要损害神经系统,因而出现诸如头痛、疲乏、健忘、情绪异常等一般症状,随后出现感觉异常、语言障碍、运动失调、视野缩小、听力障碍等甲基汞中毒症状。但是,接触甲基汞量即使很少而未出现中毒症状者,亦可能对身体造成潜在的危害。如妇女摄入少量甲基汞可导致流产、死产,或分娩的婴儿精神迟钝,甚至患先天性水俣病。在水俣病流行期间,曾出现过不少这类先天性痴呆儿。
汞污染造成的危害是骇人听闻的,因而有人将汞称为环境污染的"元凶"。
汞有机化后的甲基汞也有明显的致畸作用。曾有用甲基汞杀菌剂污染的种子喂猪,孕妇食用含汞猪肉后,其婴儿发生脑麻痹症状者。注射甲基汞也可引起子鼠严重畸形,体外实验还表明,有机汞可使淋巴细胞染色体碎裂。