「卡方分布」是什么?
卡方分布(英语:chi-square distribution[2], χ²-distribution,或写作χ²分布)是概率论与统计学中常用的一种概率分布。k个独立的标准正态分布变量的平方和服从自由度为k的卡方分布。卡方分布是一种特殊的伽玛分布,是统计推断中应用最为广泛的概率分布之一,例如假设检验和置信区间的计算。卡方分布在共同使用卡方检验用于拟合优度的观测分布为理论之一,独立的分类的两个标准定性数据,并在用于人口区间估计标准偏差a的来自样本标准差的正态分布。许多其他统计检验也使用这种分布,例如Friedman 的按秩方差分析。由卡方分布延伸出来皮尔逊卡方检验常用于:1、样本某性质的比例分布与总体理论分布的拟合优度(例如某行政机关男女比是否符合该机关所在城镇的男女比);2、同一总体的两个随机变量是否独立(例如人的身高与交通违规的关联性);3、二或多个总体同一属性的同素性检验(意大利面店和寿司店的营业额有没有差距)。(详见皮尔逊卡方检验)计算方法p-value = 1- p_CDF.χ2越大,p-value越小,则可信度越高。通常用p=0.05作为阈值,即95%的可信度。因此,由于适当自由度(df)的累积分布函数(CDF)给出了获得比该点更不极端的值的概率,因此从 1 中减去 CDF 值给出p值。低于所选显着性水平的低p值表示统计显着性,即有足够的证据拒绝零假设。显着性水平 0.05 通常用作显着和不显着结果之间的分界点。
卡方分布怎么理解?
在理论上n个独立同分布的随机变量,都服从正态分布,那么平方和服从的分布就是自由度为n的卡方分布。若n个相互独立的随机变量ξ1,ξ2,…,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和∑ξi∧2构成一新的随机变量,其卡方分布分布规律称为χ2(n)分布(chisquare distribution)。其中参数 n 称为自由度,自由度不同就是另一个χ2分布,正如正态分布中均值或方差不同就是另一个正态分布一样。补充:χ2分布在一象限内,呈正偏态,随着参数 n 的增大,χ2分布趋近于正态分布。χ2分布的均值为自由度 n,记为 Eχ2=n,这里符号“E”表示对随机变量求均值;χ2分布的方差为2倍的自由度(2n),记为 Dχ2=2n,这里符号“D”表示对随机变量求方差。从χ2分布的均值与方差可以看出,随着自由度n的增大,χ2分布向正无穷方向延伸(因为均值n越来越大),分布曲线也越来越低阔(因为方差2n越来越大)。χ2分布具有可加性:若有K个服从χ2分布且相互独立的随机变量,则它们之和仍是χ2分布,新的χ2分布的自由度为原来K个χ2分布自由度之和。表示为:χ2分布是连续分布,但有些离散分布也服从χ2分布,尤其在次数统计上非常广泛。
卡方分布公式是什么?
卡方分布公式:f(x)=12πδexp(−(x−μ)22δ2),若n个相互独立的随机变量ξ₁,ξ₂,...,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布。确定一个式子自由度的方法是:若式子包含有n个变量,其中k个被限制的样本统计量,则这个表达式的自由度为n-k。比如中包含ξ1,ξ2,…,ξn这n个变量,其中ξ1-ξn-1相互独立,ξn为其余变量的平均值,因此自由度为n-1。对于任意正整数x, 自由度为x的卡方分布是一个随机变量X的机率分布。特点:χ2分布在一象限内,呈正偏态,随着参数 n 的增大,χ2分布趋近于正态分布。χ2分布的均值为自由度 n,记为 Eχ2=n,这里符号“E”表示对随机变量求均值;χ2分布的方差为2倍的自由度(2n),记为 Dχ2=2n,这里符号“D”表示对随机变量求方差。从χ2分布的均值与方差可以看出,随着自由度n的增大,χ2分布向正无穷方向延伸(因为均值n越来越大),分布曲线也越来越低阔(因为方差2n越来越大)。χ2分布具有可加性:若有K个服从χ2分布且相互独立的随机变量,则它们之和仍是χ2分布,新的χ2分布的自由度为原来K个χ2分布自由度之和。表示为:χ2分布是连续分布,但有些离散分布也服从χ2分布,尤其在次数统计上非常广泛。
卡方分布计算公式怎么算的?
卡方公式是:H0:总体X的分布函数为F(x).如果总体分布为离散型,则假设具体为:H0:总体X的分布律为P{X=xi}=pi, i=1,2,...;当H0为真时,n次试验中样本值落入第i个小区间Ai的频率fi/n与概率pi应很接近,当H0不真时,则fi/n与pi相差很大。在0假设成立的情况下服从自由度为k-1的卡方分布。扩展资料四格表资料的卡方检验用于进行两个率或两个构成比的比较。1、专用公式:若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),(或者使用拟合度公式)。自由度v=(行数-1)(列数-1)=12、应用条件:要求样本含量应大于40且每个格子中的理论频数不应小于5。当样本含量大于40但有1=<理论频数<5时,卡方值需要校正,当样本含量小于40或理论频数小于1时只能用确切概率法计算概率。
卡方分布的期望和方差是什么?
卡方分布的期望和方差是:E(X)=n,D(X)=2nt分布:E(X)=0(n>1),D(X)=n/(n-2)(n>2)F(m,n)分布:E(X)=n/(n-2)(n>2)D(X)=[2n^2*(m+n-2)]/[m(n-2)^2*(n-4)](n>4)卡方分布(χ2分布)是概率论与统计学中常用的一种概率分布,k个独立的标准正态分布变量的平方和服从自由度为k的卡方分布,卡方分布常用于假设检验和置信区间的计算。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2=1时,称为标准正态分布,记为N(0,1)。二项分布:在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。