微分方程怎么解?
微分方程的解根据方程类型而定,以下为具体解法。一、一阶微分方程1.可分离变量方程若一阶微分方程y'=f(x,y)可以写成dy/dx=p(x)q(y),则称之为可分离变量方程,分离变量得dy/q(y)=p(x)dx,两边积分∫dy/q)(y)=∫p(x)dx即可得到通解。2.齐次方程将齐次方程通过代换将其化为可分离变量方程。令u=y/x,即y=ux,则dy/dx=u+x*du/dx,齐次方程dy/dx=φ(y/x)化为u+x*du/dx=φ(u),分离变量得du/φ(u)-u=dx/x,两边积分∫du/φ(u)-u=∫dx/x后即得齐次方程的通解。3.一阶线性方程对于一阶线性方程y'+P(x)y=Q(x)的通解为y= e ^-∫P(x)dx (∫Q(x)*e ^∫P(x)dx+C)4.伯努利方程伯努利方程y'+P(x)y=Q(x)y^n(n∈R,n≠0,1)的通解为z=y^1-n= e ^-∫(1-n)P(x)dx (∫(1-n)Q(x)*e ^∫(1-n)P(x)dx dx+C)二、可降阶的二阶微分方程 y”=f(x)型方程——缺y,y'对于此类方程,只要连续积分两次,即可得原方程的通解.y”=f(x,y')型方程——缺y令y'=p,则y''=p'=dp/dx,原方程降为p(x)的一阶方程p'=f(x,p).设其通解为p=φ(x,C1),即y'=φ(x,C1),两边积分即可得原方程的通解y= ∫φ(x,C1)dx+C2.y”=f(y,y’)型方程——缺x具体变换过程如下:令y'=p,则y''=p'=dp/dx=p*dp/dx,原方程降为一阶方程p*dp/dy=f(y,p)设其通解为p=φ(y,C1),分离变量有 dy /φ(y,C1)=dx,两边积分即得其通解为∫dy/φ(y,C1)x+C2三、二阶线性微分方程二阶常系数齐次线性方程y''+py'+qy=0,根据其特征方程r^2+pr+q=0根不同情况,其通解有以下三种形式:(1)特征方程r2+pr+q=0有两个不相等的实根 r1,r2时,通解为Y=C1e^r1x+C2e^r2x(2)特征方程r2+pr+q=0有两个相等的实根r时,通解为Y=(C+C2x)e^rx(3)特征方程r2+pr+q=0有一对共轭复根r=a±iβ时,通解为Y=e^αx *(C1cos βx+C2sin βx).
微分方程怎么解?
微分方程的解根据方程类型而定,以下为具体解法。一、一阶微分方程1.可分离变量方程若一阶微分方程y'=f(x,y)可以写成dy/dx=p(x)q(y),则称之为可分离变量方程,分离变量得dy/q(y)=p(x)dx,两边积分∫dy/q)(y)=∫p(x)dx即可得到通解。2.齐次方程将齐次方程通过代换将其化为可分离变量方程。令u=y/x,即y=ux,则dy/dx=u+x*du/dx,齐次方程dy/dx=φ(y/x)化为u+x*du/dx=φ(u),分离变量得du/φ(u)-u=dx/x,两边积分∫du/φ(u)-u=∫dx/x后即得齐次方程的通解。3.一阶线性方程对于一阶线性方程y'+P(x)y=Q(x)的通解为y= e ^-∫P(x)dx (∫Q(x)*e ^∫P(x)dx+C)4.伯努利方程伯努利方程y'+P(x)y=Q(x)y^n(n∈R,n≠0,1)的通解为z=y^1-n= e ^-∫(1-n)P(x)dx (∫(1-n)Q(x)*e ^∫(1-n)P(x)dx dx+C)二、可降阶的二阶微分方程 y”=f(x)型方程——缺y,y'对于此类方程,只要连续积分两次,即可得原方程的通解.y”=f(x,y')型方程——缺y令y'=p,则y''=p'=dp/dx,原方程降为p(x)的一阶方程p'=f(x,p).设其通解为p=φ(x,C1),即y'=φ(x,C1),两边积分即可得原方程的通解y= ∫φ(x,C1)dx+C2.y”=f(y,y’)型方程——缺x具体变换过程如下:令y'=p,则y''=p'=dp/dx=p*dp/dx,原方程降为一阶方程p*dp/dy=f(y,p)设其通解为p=φ(y,C1),分离变量有 dy /φ(y,C1)=dx,两边积分即得其通解为∫dy/φ(y,C1)x+C2三、二阶线性微分方程二阶常系数齐次线性方程y''+py'+qy=0,根据其特征方程r^2+pr+q=0根不同情况,其通解有以下三种形式:(1)特征方程r2+pr+q=0有两个不相等的实根 r1,r2时,通解为Y=C1e^r1x+C2e^r2x(2)特征方程r2+pr+q=0有两个相等的实根r时,通解为Y=(C+C2x)e^rx(3)特征方程r2+pr+q=0有一对共轭复根r=a±iβ时,通解为Y=e^αx *(C1cos βx+C2sin βx).
微分方程的解通常是什么表示形式?
微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。例如:其解为:其中C是待定常数;如果知道则可推出C=1,而可知 y=-\cos x+1。一阶线性常微分方程对于一阶线性常微分方程,常用的方法是常数变易法:对于方程:y'+p(x)y+q(x)=0,可知其通解:然后将这个通解代回到原式中,即可求出C(x)的值。二阶常系数齐次常微分方程对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解对于方程:可知其通解:其特征方程:根据其特征方程,判断根的分布情况,然后得到方程的通解一般的通解形式为:若则有若则有在共轭复数根的情况下:r=α±βi扩展资料一阶微分方程的普遍形式一般形式:F(x,y,y')=0标准形式:y'=f(x,y)主要的一阶微分方程的具体形式约束条件微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。唯一性存在性是指给定一微分方程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理 [4] 则可以判别解的存在性及唯一性。针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。参考资料来源:百度百科-常微分方程参考资料来源:百度百科-微分方程
微分方程通常有哪几种形式?
二阶常系数齐次线性方程的形式为:y''+py'+qy=0其中p,q为常数,其特征方程为 λ^2+pλ+q=0依据判别式的符号,其通解有三种形式:1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*[e^(λ1*x)]+C2*[e^(λ2*x)];2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*[e^(λ1*x)];3、△=p^2-4q<0,特征方程具有共轭复根α+-(i*β),通解为y(x)=[e^(α*x)]*(C1*cosβx+C2*sinβx)。最简单的常微分方程,未知数是一个实数或是复数的函数,但未知数也可能是一个向量函数或是矩阵函数,后者可对应一个由常微分方程组成的系统。扩展资料:偏微分方程的阶数定义类似常微分方程,但更细分为椭圆型、双曲线型及抛物线型的偏微分方程,尤其在二阶偏微分方程中上述的分类更是重要。有些偏微分方程在整个自变量的值域中无法归类在上述任何一种型式中。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。参考资料来源:百度百科--微分方程