简单介绍神经网络算法
直接简单介绍神经网络算法
神经元:它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。
神经元内输入 经历了3步数学运算,
先将两个输入乘以 权重 :
权重 指某一因素或指标相对于某一事物的重要程度,其不同于一般的比重,体现的不仅仅是某一因素或指标所占的百分比,强调的是因素或指标的相对重要程度
x1→x1 × w1
x2→x2 × w2
把两个结果相加,加上一个 偏置 :
(x1 × w1)+(x2 × w2)+ b
最后将它们经过 激活函数 处理得到输出:
y = f(x1 × w1 + x2 × w2 + b)
激活函数 的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是 sigmoid函数
sigmoid函数的输出 介于0和1,我们可以理解为它把 (−∞,+∞) 范围内的数压缩到 (0, 1)以内。正值越大输出越接近1,负向数值越大输出越接近0。
神经网络: 神经网络就是把一堆神经元连接在一起
隐藏层 是夹在输入输入层和输出层之间的部分,一个神经网络可以有多个隐藏层。
前馈 是指神经元的输入向前传递获得输出的过程
训练神经网络 ,其实这就是一个优化的过程,将损失最小化
损失 是判断训练神经网络的一个标准
可用 均方误差 定义损失
均方误差 是反映 估计量 与 被估计量 之间差异程度的一种度量。设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的 数学期望 ,称为估计量t的 均方误差 。它等于σ2+b2,其中σ2与b分别是t的 方差 与 偏倚 。
预测值 是由一系列网络权重和偏置计算出来的值
反向传播 是指向后计算偏导数的系统
正向传播算法 是由前往后进行的一个算法
神经网络算法实例说明有哪些?
在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
hinton发明了一种计算神经网络参数的快速算法
hinton发明了一种计算神经网络参数的快速算法,叫后向传播算法。后向传播算法的基本介绍:后向传播算法简称BP算法,适合于多层神经元网络的一种学习算法,它建立在梯度下降法的基础上。这个算法和链式法则结合用于有效地训练神经网络。BP网络的输入输出关系实质上是一种映射关系:一个n输入m输出的BP神经网络所完成的功能是从n维欧氏空间向m维欧氏空间中一有限域的连续映射,这一映射具有高度非线性。它的信息处理能力来源于简单非线性函数的多次复合,因此具有很强的函数复现能力。