差分方程

时间:2024-12-05 08:45:12编辑:奇闻君

差分方程求解公式

差分方程求解公式:先求齐次的通解,再求非齐次的特解,合起来就是通解了。差分方程包含未知函数的差分及自变数的方程。在求微分方程*的数值解时,常把其中的微分用相应的差分来近似,所导出的方程就是差分方程。通过解差分方程来求微分方程的近似解,是连续问题离散化*的一个例子。在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程式:序列的每一项目是定义为前一项的函数。某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。定理1(齐次线性差分方程解的叠加原理)若y1(t),y2(t),…,ym(t)是齐次线性差分方程yt+n+a1yt+n-1 +a2yt+n-2+…+an-1yt+1+anyt=0的m个特解(m≥2),则其线性组合y(t)=A1y1(t)+A2y2(t)+…+Amym(t)也是方程 的解,其中A1,A2,…,Am为任意常数。定理2n阶齐次线性差分方程yt+n+a1yt+n-1 +a2yt+n-2 +…+an-1yt+1+anyt=0一定存在n个线性无关的特解。定理3(齐次线性差分方程通解结构定理)如果y1(t),y2(t),…,yn(t)是齐次线性差分方程yt+n+a1yt+n-1 +a2yt+n-2 +…+an-1yt+1+anyt=0的n个线性无关的特解,则方程 的通解为:yA(t)=A1y1(t)+A2y2(t)+…+Anyn(t),其中A1,A2,…,An为n个任意(独立)常数。

差分方程是什么意思?

差分方程△y的平方是2△1=2²+2a+b+1²=73△(-2)=3²+3a-2b+(-2)²=23。在解题时应用十分广泛,涉及到解系数的取值范围、判断方程根的个数及分布情况等。一元二次方程ax^2+bx+c=0(a≠0)的根的判别式是b^2-4ac,用“△”表示(读做“delta”)。差分方程:设{ut,t=0,±1…}为实序列,若满足如下关系式ut-ᵠ1ut-1-…-ᵠput-p=h(t),其中ᵠ1,ᵠ2…,ᵠp为实数,h(t)为t的已知实函数,则称上式为{ut}所满足的线性差分方程。如将上式中的确定性函数ut,h (t)代之以统计特性已知的随机序列,于是便得到线性随机差分方程。在时间序列分析中并不讨论这样广泛的模型。xt-ᵠ1xt-1-…-ᵠpxt-p=εt-θ1εt-1-…-θqεt-g其中ᵠ1, …,ᵠp, 及θ1, …,θg为实数, {xt}是零均值平稳序列,{εt}是平稳白噪声序列,且当s>t时Eεsxt=0上述特定的线性随机差分方程就是时间序列分析中的ARMA (p,g) 模型。

一阶差分方程通解公式

一阶差分方程通解公式:dy/dx+P(x)y=Q(x),一阶差分就是离散函数中连续相邻两项之差。当自变量从x变到x+1时,函数y=y(x)的改变量∆yx=y(x+1)-y(x),(x=0,1,2,...)称为函数y(x)在点x的一阶差分,记为∆yx=yx+1-yx,(x=0,1,2,...)。
利用比较系数法,推导出一阶常系数线性差分方程yt+2+pyt+1+qyt=(a1t+a0)dt和yt+2+pyt+1+qyt=(a1t+a0)sinωt特解的一般公式,利用该公式可以直接得到此类差分方程的特解。在通解中给定一组任意常数c1,...cn所确定的解,就是该n阶差分方程的特解,常由初始条件求出一组任意常数的值,确定特解。


求差分方程 的通解

差分方程是指包含未知函数的差分及自变数的方程,再求微分方程的数值解,时常把其中的微分用相映的差分来近似,所导出的方程就是差分方程。通过解拆分方程来求微分方程的近似解,是连续问题离散化的一个例子。
解方程方法。一,观察方程,二,运用等式的性质进行解方程,三,合并同类项,使方程变形为单项式,四,移项将含未知数的项移到左边,常数项移到右边五。去括号,运用去括号法则,将方程中的括号去掉,又四项法则求解。
在求微分方程的数值解,时常把其中的微分用相映的差分来近似,所导出的方程就是差分方程。通过解差分方程来求微分方程的近似解,是连续问题离散化的一个例子。


上一篇:办公用品公司

下一篇:没有了