andrew ng

时间:2024-12-12 09:52:51编辑:奇闻君

人工智能、机器学习和深度学习的区别是什么?

人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。五十年代,人工智能曾一度被极为看好。之后,人工智能的一些较小的子集发展了起来。先是机器学习,然后是深度学习。深度学习又是机器学习的子集,深度学习造成了前所未有的巨大的影响。有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。今年早些时候,GoogleDeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machinelearning)和深度学习(deeplearning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。

何为人工智能、机器学习和深度学习?三者间的关系又是如何?

随着计算机的快速发展,人工智能越来越火。我们每个人都时不时的听到人工智能,但是人工智能到底是什么?它和机器学习和深度学习到底是什么关系?一、人工智能(ArtificialIntelligence)人工智能(ArtificialIntelligence),英文缩写为AI。是计算机科学的一个分支。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是一个系统,它可以在系统内部运行,使机器具有执行任务的逻辑能力。人工智能,旨在创造出能像人类一样工作和反应的智能机器。二、机器学习(machinelearning)——一种实现人工智能的方法机器学习(machinelearning),机器学习可以被定义为人工智能的一个分支或人工智能的具体应用。在机器学习中,机器具有独立学习的能力,不需要显式编程。这可以让应用程序根据实时场景中的数据进行自我调整。机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。三、深度学习(deeplearning)——一种实现机器学习的技术一种基于神经网络的学习方法。深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。为了更好理解,笔者画了下图来表述它们之间关系。人工智能包括了机器学习和深度学习,机器学习包括了深度学习,他们是子类和父类的关系。

梯度下降算法的正确步骤是什么?

1、用随机值初始化权重和偏差。2、把输入传入网络,得到输出值。3、计算预测值和真实值之间的误差。4、对每一个产生误差的神经元,调整相应的(权重)值以减小误差。5、重复迭代,直至得到网络权重的最佳值。梯度下降法,它是解析法中最古老的一种,其他解析方法或是它的变形,或是受它的启发而得到的,因此它是最优化方法的基础。作为一种基本的算法,他在最优化方法中占有重要地位。其优点是工作量少,存储变量较少,初始点要求不高。其缺点是收敛慢,效率不高,有时达不到最优解。

梯度下降法的基本思想

梯度下降法的基本思想如下:定义梯度下降法(Gradient descent,简称GD)是一阶最优化算法。要使用梯度下降法找到一个函数的局部极小值。必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点,这个过程则被称为梯度上升法。用途梯度下降法是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降法和最小二乘法是最常采用的方法。在求解损失函数的最小值时。可以通过梯度下降法来迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。在机器学习中,基于基本的梯度下降法发展了两种常用梯度下降方法,分别为随机梯度下降法和批量梯度下降法。原理在当前位置求偏导,即梯度,正常的梯度方向类似于上山的方向,是使值函数增大的,下山最快需使最小,从负梯度求最小值,这就是梯度下降。梯度上升是直接求偏导,梯度下降则是梯度上升的负值。由于不知道怎么下山,于是需要走一步算一步,继续求解当前位置的偏导数。这样一步步的走下去,当走到了最低点,此时我们能得到一个近似最优解。

上一篇:考试预约

下一篇:没有了