人工智能技术应用

时间:2024-12-23 14:38:02编辑:奇闻君

人工智能的应用领域有哪些?

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 人工智能产品有哪些人工智能一般是作为辅助人类工作的工具出现的,扫地机器人、医疗机器人、服务员机器人等是最常见的人工智能形态。事实上,人工智能并不只有机器人一种形态,从领域上来看,包括机器人、语言识别、图像识别、自然语言处理和专家系统等。今天我们就来看下,除了机器人,人工智能的产品还有哪些。谷歌人工智能项目DeepMind谷歌位于伦敦的研发部门DeepMind已经开发出能够自主玩视频游戏的人工智能技术。以DeepMind技术为基础的计算机系统,能以惊人的速度学习,快速掌握游戏玩法,精通游戏获胜方法。此前,团队称之为深度Q-network学习网络,仅需观察游戏画面以及游戏得分的变化情况,即可分析获得“通关技巧”以及获得高分的玩法及算法,能够达到专业级人类玩家的水平。目前这个系统在相同算法,网络架构以及参数的设定下已经经过49个游戏的测试,目前已经能够熟练22种游戏(包括上述的Space Invaders),达到专家级的游戏水平。这套系统进一步证明人工智能可以通过深度学习,从而掌握游戏技巧,并获得和人类一样的操控力,甚至在某些方面超过人类。IBM Watson去年,IBM发布了Watson Analytics。Watson Analytics实现了基于自然语言的认知服务,可以为商务人士即时提供预测和可视化分析工具。Watson Analytics将于本年末推出基于云服务的免费增值应用版本(Freemium Version),可在电脑及移动设备上使用。Watson Analytics可提供自助式分析功能,包括数据访问、数据清洗、数据仓库,帮助企业用户获取和准备数据,并基于此进行分析、实现结果可视化,为使用者采取有效行动和开展进一步交互提供基础和便利。微软人工智能Torque中文版今年2月份,微软发布了一款为安卓平台的中国用户度身打造、以手势驱动并语音交互的人工智能产品Torque中文版。作为微软在安卓平台上的首个人工智能产品,同时也是微软首个针对可穿戴设备的中文产品,Torque的目标是用最小的界面把信息的传递做到最直接、最及时。Torque的诞生解放了安卓用户的双手,用户只需要轻轻摇动手腕,然后对它说:“快乐大本营主持人”,“最近的肯德基在哪”,“打电话给张勇”等指令,就能体验以极简的动作轻松得到信息和完成更多任务——这也正是微软对移动互联时代,移动生产力和效率的理解。据微软表示,Torque和小冰、小娜等微软人工智能产品一样,都采用了必应大数据平台作为底层引擎,用来处理每个用户通过手机和移动互联网上传到云里的语音命令;而微软(亚洲)互联网工程院的人工智能产品团队,针对中国用户的偏好和习惯,在功能上做了特殊设计和本地化开发。Youtube自动字幕2009年时Google便已经利用他们的语音识别技术,在YouTube上提供实时的「自动字幕(Automatic Captions)」功能,除了让用户可以在避免干扰到他人以不开启喇叭的状况下,观赏网络上成千上万的各种影片内容。YouTube调用Google的自动语音识别技术(ASR)给YouTube视频加入字幕,这个技术来自于Google Voice。当然生成的字幕不可能100%准确,但起码可以帮助你提高听力来理解视频内容,而且Google会一直改进自动语音识别技术的。这项技术支持英语、日语、韩语、西班牙语、德语、意大利语、法语、葡萄牙语、俄语、荷兰的自动字幕。除了自动字幕功能以外,YouTube还针对给视频制作字幕的朋友添加了字幕时间和自动时间的功能,使大家可以更轻松的自己动手做字幕。你只需要创建一个简单的文本文件,里面写上所有视频里说的单词,然后Google利用自动语音识别技术可以将文本里的这些话与自己识别出的话做对应,这样准确率就提高了,而且你还不必花太多时间去一句一句的配字幕。人工智能仿生眼英国曼彻斯特皇家眼科医院已经成功实施了世界首例人工仿生机器眼移植治疗老年性视网膜黄斑变性(AMD)所导致失明的手术。这个人工智能仿生眼装置被称为Argus II,由两部分组成:体内植入部分和体外病人必须穿戴的部分。植入设备将植入到病人的视网膜上,设备中含有电极阵列,电池和一个无线天线。外部设备包含一副眼镜,内置前向的摄像头和无线电发射器以及一个视频处理单元。摄像头会捕捉到植入体正对面的画面,将信号发送到视频处理器上等待处理。经处理后的信号又被发送回眼镜上,信号通过眼镜被植入设备的天线所接收。最终,视频被“输出”到电极阵列上,电极阵列起到视神经模拟的作用。电极阵列的分辨率达到60像素水平,这已经足够让植入设备追踪物体运动的轨迹,看清基本的图案和形状,或者缓慢阅读较大的文字。Argus II所提供的画面是黑白的,但Argus的开发团队正在努力对电极大脑刺激进行编译,希望尽快能让大脑接收彩色信号。患者在手术后,恢复后已经能够识别出垂直或水平的线条,能够辨识出人脸,不需要放大镜阅读报纸。更有趣的是,通过这项手术,患者即使闭上眼睛也能够看到眼睛的景象,这就让人感到有一些有趣了。此外,美国开发人工智能眼球的公司--第二视觉公司开发的人工智能眼球也已获准上市,该产品可以让完全失明的盲人重新恢复视力。 新闻写作机器人美联社去年夏天起用Wordsmith平台自动撰写财经新闻。按照美联社商业新闻主管Lou Ferrara的说法,采用基于算法的机器新闻写作后,在无须增加新的人手的情况下,美联社的商业新闻中关于企业季度经营状况的报道量,将增加10多倍,即从原先每季度300篇上升到4400篇,而与此同时将能把之前用于此类报道的记者“解放”出来,让其可以从事更具有创造性和挑战性的新闻策划和新闻源拓展工作。该系统刚上线时,尚需由人工审稿并对平台加以调整,三个月后已完全不需要人为干预。康奈尔大学开发的鸟脸识别技术康奈尔大学与VIsipedia研究计划小组共同开发了Merlin Bird Photo ID软件,可以借助计算机视觉识别技术和深度机器学习来识别各种图片中出现的鸟类种类。这对于入门的赏鸟人士和鸟类爱好者来说,是个非常不错的软件。通过深度机器学习,这个程序能够在数秒内提供识别结果,前三种识别结果准确率已经达到了90%以上。用户可以通过上传不知道种类的鸟类图片,并且用方框框出需要识别的鸟类图像缩小识别范围。软件能够从数万张图片中指出已知种类的鸟,目前数据库已经包含在北美常见的400多种鸟类。随着用户使用次数,和深度机器学习,准确度会日渐提高。康奈尔大学的教授Serge Belongie说:“计算机可以比人类更有效地处理图片,它们能够分类、建立索引、处理大量的图形细节特征来识别结果”。Skype实时翻译工具微软的实时翻译工具Skype Translator将语音识别技术和微软所谓的“深度神经网络及微软已得到证明的静态机器翻译技术”结合在一起。能自动翻译不同语言的语音通话和即时通信消息。目前支持英语、西班牙语、意大利语和汉语普通话。此外,即时通信消息的翻译已支持50种语言,包括法语、日语、阿拉伯语、威尔士语,甚至克林贡语。由于这款翻译工具集成了机器翻译、语音识别、机器学习、大数据等先进技术,因此被广泛看好。据了解,Skype中文实时口译所需的语音识别技术,由微软中国和美国的研究人员联合开发。人工智能所涉及的范围人工智能涉及的学科比较多,生活中的方方面面都有人工智能的实际应用, 主要涉及哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学等学科研究范畴 :自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法 人类思维方式应用领域: 智能控制,专家系统,机器人学,语言和图像理解,遗传编程 机器人工厂实际应用 :机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等.


人工智能的应用领域有哪些?

人工智能的应用领域有哪些?
人工智能主要应用领域
1、农业:农业中已经用到很多的AI技术,无人机喷撒农药,除草,农作物状态实时监控,物料采购,数据收集,灌溉,收获,销售等。通过应用人工智能设备终端等,大大提高了农牧业的产量,大大减少了许多人工成本和时间成本。
2、通信:智能外呼系统,客户数据处理(订单管理系统),通信故障排除,病毒拦截(360等),骚扰信息拦截等
3、医疗:利用最先进的物联网技术,实现患者与医务人员、医疗机构、医疗设备之间的互动,逐步达到信息化。例:健康监测(智能穿戴设备)、自动提示用药时间、服用禁忌、剩余药量等的智能服药系统。
4、社会治安:安防监控(数据实时联网,公安系统可以实时进行数据调查分析)、电信诈骗数据锁定、犯罪分子抓捕、消防抢险领域(灭火、人员救助、特殊区域作业)等
5、交通领域:航线规划、无人驾驶汽车、超速、行车不规范等行为整治
6、服务业:餐饮行业(点餐、传菜,回收餐具,清洗)等,订票系统(酒店、车票、机票等)的查询、预定、修改、提醒等
7、金融行业:股票证券的大数据分析、行业走势分析、投资风险预估等
8、大数据处理:天气查询,地图导航,资料查询,信息推广(推荐引擎是基于用户的行为、属性(用户浏览行为产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的浏览页面。),个人助理


人工智能专业主要课程有哪些?

人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。

二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算

四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。

七、VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势


人工智能技术应用学什么?

《人工智能数据集处理》、《分布式计算与存储技术》、《机器学习》、《深度学习》、《智能感知与理解》、《自然语言处理》、《智能产品营销与服务》等。人工智能技术应用是中国普通高等学校专科专业。就业方向:人工智能产业及其应用相关的企事业单位:在人工智能技术应用开发、系统运维、产品营销、技术支持等岗位群,从事人工智能应用产品开发与测试、数据处理、系统运维、产品营销、技术支持等工作。

上一篇:写冬天的诗句

下一篇:没有了