三角函数的公式

时间:2023-05-09 06:52:51编辑:奇闻君

知识点:三角函数的公式收集:暴诹谠 编辑:紫罗兰君
本知识点包括:1、三角函数积分公式大全 2、三角函数公式大全 3、高中三角函数公式 4、求一份完整的三角函数公式!!包括csc和sec和cot和... 5、三角函数的降幂公式 。


《三角函数的公式》相关知识

同角三角函数间的关系

sinα/cosα=tanα

cosα/sinα=cotanα

tanα cotanα=1

sin²α+cos²α=·1

secα=1/cosα

cscα=1/sinα

sec²α=1+tan²α

csc²α=1+cotan²α

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan²A)

ctg2A=(ctg²A-1)/2ctga

cos2a=cos²a-sin²a=2cos²a-1=1-2sin²a

sin2α=2sincosα

半角公式

sin(A/2)=±√(1-cosA)/2)〕

cos(A/2)=±√〔(1+cosA)/2〕

tan(A/2)=±√〔(1-cosA)/(1+cosA)〕

tan(A/2)=±√〔(1-cosA)/(1+cosA)〕

ctg(A/2)=±√〔(1+cosA)/(1-cosA)〕

积化和差

2sinAcosB=sin(A+B)+sin(A-B)

2sinBcosA=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)+cos(A-B)

2sinAsinB=-cos(A+B)+cos(A-B)

和差化积

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

sinA-sinB=2sin((A-B)/2)cos((A+B)/2)

cosA+cosB=2cos((A+B)/2)cos((A-B)/2)

cosA-cosB=-2sin((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgB=sin(A+B)/sinAsinB

ctgA-ctgB=sin(B-A)/sinAsinB

还有诱导公式,我觉得不用记.只记住“奇变偶不变,符号看象限”就行了.

参考思路:

同角三角函数间的关系

sinα/cosα=tanα

cosα/sinα=cotanα

tanα cotanα=1

sinα+cosα=·1

secα=1/cosα

cscα=1/sinα

secα=1+tanα

cscα=1+cotanα

两角和公式

sin(A+B)=sinAcosB+cosAsinB

s...

知识拓展:

1:【三角函数所有有关公式不仅课本上的,所有有关的】


知识要点归纳:

倒数关系: 商的关系: 平方关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1 sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=csc2α

(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积.”)

诱导公式(口诀:奇变偶不变,符号看象限.)

sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα

cot(-α)=-cotα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈Z)

两角和与差的三角函数公式 万能公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=——————

1-tanα ·tanβ

tanα-tanβ

tan(α-β)=——————

1+tanα ·tanβ

2tan(α/2)

sinα=——————

1+tan2(α/2)

1-tan2(α/2)

cosα=——————

1+tan2(α/2)

2tan(α/2)

tanα=——————

1-tan2(α/2)

半角的正弦、余弦和正切公式 三角函数的降幂公式

二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα

tan2α=—————

1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α

tan3α=——————

1-3tan2α

三角函数的和差化积公式 三角函数的积化和差公式

α+β α-β

sinα+sinβ=2sin———·cos———

2 2

α+β α-β

sinα-sinβ=2cos———·sin———

2 2

α+β α-β

cosα+cosβ=2cos———·cos———

2 2

α+β α-β

cosα-cosβ=-2sin———·sin———

2 2 1

sinα ·cosβ=-[sin(α+β)+sin(α-β)]

2

1

cosα ·sinβ=-[sin(α+β)-sin(α-β)]

2

1

cosα ·cosβ=-[cos(α+β)+cos(α-β)]

2

1

sinα ·sinβ=— -[cos(α+β)-cos(α-β)]

2

化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)

2:有关三角函数辅助角公式大家看看我错在哪里,分别用辅助角公式化简sinx-cosx和cosx-sinx那么:sinx-cosx=根号2*sin(x-π/4)而cosx-sinx=-sinx+cosx根据辅助角公式怎么也是根号2*sin(x-π/4)?因为辅助角公式


知识要点归纳:

公式:asinx+bcosx=根号(a^2+b^2)*sin(x+arctan b/a)有错误.

正确公式是:asinx+bcosx=根号(a^2+b^2)*sin(x+辅助角t),

其中“辅助角t”满足条件“tan(辅助角t)=b/a”,而辅助角t的象限位置由点(a,b)的象限位置决定.

你的错误在于:

(1)认为“辅助角t=arctan b/a”.因为

“辅助角t”可能在四个象限,而arctan b/a的取值范围是(-π/2,π/2);它们显然不一定相等;

(2)sinx-cosx的辅助角在第四象限,可用arctan-1/1表示,但cosx-sinx的辅助角在第二象限,不能用arctan(1/-1)表示,可取成3π/4.

3:【有关三角函数的公式倍角公式倍角公式的变形sin2a/2sina=万能公式3倍角公式】


知识要点归纳:

倒数关系:商的关系:平方关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1 sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=csc2α

诱导公式(口诀:奇变偶不变,符号看象限.)

sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα

cot(-α)=-cotα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈Z)

两角和与差的三角函数公式 万能公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=——————

1-tanα ·tanβ

tanα-tanβ

tan(α-β)=——————

1+tanα ·tanβ

2tan(α/2)

sinα=——————

1+tan2(α/2)

1-tan2(α/2)

cosα=——————

1+tan2(α/2)

2tan(α/2)

tanα=——————

1-tan2(α/2)

半角的正弦、余弦和正切公式 三角函数的降幂公式

二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα

tan2α=—————

1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α

tan3α=——————

1-3tan2α

三角函数的和差化积公式 三角函数的积化和差公式

α+β α-β

sinα+sinβ=2sin———·cos———

2 2

α+β α-β

sinα-sinβ=2cos———·sin———

2 2

α+β α-β

cosα+cosβ=2cos———·cos———

2 2

α+β α-β

cosα-cosβ=-2sin———·sin———

2 2 1

sinα ·cosβ=-[sin(α+β)+sin(α-β)]

2

1

cosα ·sinβ=-[sin(α+β)-sin(α-β)]

2

1

cosα ·cosβ=-[cos(α+β)+cos(α-β)]

2

1

sinα ·sinβ=— -[cos(α+β)-cos(α-β)]

2

化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)

4:【有关三角函数的公式全部】


知识要点归纳:

倒数关系:

  tanα ·cotα=1

  sinα ·cscα=1

  cosα·secα=1

  商的关系:

  sinα/cosα=tanα=secα/cscα

  平方关系:(sinx)^2+(cosx)^2=1

(secx)^2-(tanx)^2=1

(cscx)^2-(cotx)^2=1

二倍角公式  

sin2A=2sinA·cosA

cos2A=2(cosx)^2-1=1-2(sinx)^2

tan2A=(2tanA)/(1-tan^2(A))

半角公式  sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

半角公式  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

  sin^2(A/2)=[1-cos(A)]/2

  cos^2(A/2)=[1+cos(A)]/2

  tan(A/2)=(1-cosA/sinA=sinA/(1+cosA)

两角和公式  

两角和公式

cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ -cosαsinβ

  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

  cot(A+B) = (cotAcotB-1)/(cotB+cotA)

  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

和差化积  sinθ+sinφ =2sin[(θ+φ)/2] cos[(θ-φ)/2]

和差化积公式

sinθ-sinφ=2cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]

  cosθ-cosφ= -2sin[(θ+φ)/2]sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差  sinαsinβ=-[cos(α+β)-cos(α-β)] /2

  cosαcosβ=[cos(α+β)+cos(α-β)]/2

  sinαcosβ=[sin(α+β)+sin(α-β)]/2

  cosαsinβ=[sin(α+β)-sin(α-β)]/2

公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)= sinα

  cos(2kπ+α)= cosα

  tan(2kπ+α)= tanα

  cot(2kπ+α)= cotα

  公式二:

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)= -sinα

  cos(π+α)= -cosα

  tan(π+α)= tanα

  cot(π+α)= cotα

  公式三:

  任意角α与 -α的三角函数值之间的关系:

  sin(-α)= -sinα

  cos(-α)= cosα

  tan(-α)= -tanα

  cot(-α)= -cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)= sinα

  cos(π-α)= -cosα

  tan(π-α)= -tanα

  cot(π-α)= -cotα

  公式五:

  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)= -sinα

  cos(2π-α)= cosα

  tan(2π-α)= -tanα

  cot(2π-α)= -cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)= cosα

  cos(π/2+α)= -sinα

  tan(π/2+α)= -cotα

  cot(π/2+α)= -tanα

  sin(π/2-α)= cosα

  cos(π/2-α)= sinα

  tan(π/2-α)= cotα

  cot(π/2-α)= tanα

  sin(3π/2+α)= -cosα

  cos(3π/2+α)= sinα

  tan(3π/2+α)= -cotα

  cot(3π/2+α)= -tanα

  sin(3π/2-α)= -cosα

  cos(3π/2-α)= -sinα

  tan(3π/2-α)= cotα

  cot(3π/2-α)= tanα

  (以上k∈Z)

  A·sin(ωt+θ)+ B·sin(ωt+φ) =

  √{(A+2ABcos(θ-φ)} · sin{ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2 +2ABcos(θ-φ)} }

5:三角函数有那些公式?


知识要点归纳:

公式分类

同角三角函数的基本关系

tan α=sin α/cos α

平常针对不同条件的常用的两个公式

sin αˇ2+cos αˇ2=1 tan α *tan α 的邻角=1

锐角三角函数公式

正弦: sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边

二倍角公式

sin2A=2sinA•cosA cos2A=cos^2 A-sin^2 A=1-2sin^2 A=2cos^2 A-1 tan2A=(2tanA)/(1-tan^2 A)

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina =2sina(1-sin^2a)+(1-2sin^2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos^2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin^2a) =4sina[(√3/2)^2-sin^2a] =4sina(sin^260°-sin^2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos^2a-3/4) =4cosa[cos^2a-(√3/2)^2] =4cosa(cos^2a-cos^230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

和差化积

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

积化和差

sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2

双曲函数

sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容

诱导公式

sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限

万能公式

sinα=2tan(α/2)/[1+tan²(α/2)] cosα=[1-tan²(α/2)]/[1+tan²(α/2)] tanα=2tan(α/2)/[1-tan²(α/2)]

其它公式

(1) (sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)

猜你喜欢:

1:三角函数积分公式大全

提示:∫sin x dx = -cos x + C ∫ cos x dx = sin x + C ∫tan x dx = ln |sec x | + C ∫cot x dx = ln |sin x | + C ∫sec x dx = ln |sec x + tan x | + C ∫csc x dx = ln |csc x – cot x | + C ∫sin ²x dx =1/2x -1/4 sin 2x + C ∫ cos ²x d...

2:三角函数公式大全

提示:一、倍角公式 1、Sin2A=2SinA*CosA 2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) ) 二、降幂公式 1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2 2、2cos^2(α)=(1+cos(2α))/2=co...

3:高中三角函数公式

提示:三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB  cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (c...

4:求一份完整的三角函数公式!!包括csc和sec和cot和...

提示:倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos...

5:三角函数的降幂公式

提示:三角函数的降幂公式是:cos²α = ( 1+ cos2α ) / 2 sin²α=( 1 - cos2α ) / 2 tan²α=(1-cos2α)/(1+cos2α) 运用二倍角公式就是升幂,将公式cos2α变形后可得到降幂公式: cos2α=cos²α-sin²α=2cos²α-1=1-2sin²...

上一篇:三体归零者

下一篇:世界上最辣的辣椒,世界最辣的辣椒做法